Flexural Capacity Study on Square Tube Filled with Steel Reinforced Concrete Members

2010 ◽  
Vol 163-167 ◽  
pp. 1574-1577 ◽  
Author(s):  
Tong Feng Zhao ◽  
Hong Nan Li ◽  
Jia Huan Yu

Moment-deformation curves of square steel tube filled with steel reinforced concrete subjected to bending load were simulated by the ABAQUS software. Calculated and experimental curves agreed well with each other. Through studying further the calculated member, the behavior of materials subjected to moment is given. Finally, flexural capacity formula of square steel tube filled with cross steel reinforced concrete is proposed.

2012 ◽  
Vol 446-449 ◽  
pp. 98-101
Author(s):  
Chun Xia Li ◽  
Zhi Sheng Ding ◽  
Shi Lin Yan

The balanced reinforcement ratio of FRP-reinforced concrete members and the flexural capacity under two different failure modes (concrete crushing and FRP rupture) are established, based on the analysis on flexural capacity of steel-reinforced concrete members in current concrete code. The effect of material properties on the balanced ratio, the variation of flexural capacity with different reinforcement ratio and a simplified nominal flexural capacity under FRP-rupture failure are derived.


2010 ◽  
Vol 163-167 ◽  
pp. 1578-1581
Author(s):  
Yang Wei Ou ◽  
Tong Feng Zhao ◽  
Xiao Dong Zhen

Square steel tube filled with steel reinforced concrete subjected to shear force was simulated by finite element method. Limit value of broken on pure shear, bending-shear and bending were given. Influence of stirrup ratio, steel reinforced ratio, strength of concrete under shear force was also analyzed. Finally, formula for pure shear capacity of square steel tube filled with steel reinforced concrete was proposed by research the calculated results. Calculated results showed that it agreed well with that of corresponding document.


2011 ◽  
Vol 255-260 ◽  
pp. 457-461 ◽  
Author(s):  
Tong Feng Zhao ◽  
Yang Wei Ou ◽  
Xiao Xuan Sheng

To study further the bearing capacity of square steel tube columns filled with steel reinforced concrete, several broken modes were divided based on the changing of neutral axial. Bearing capacity computation formula was deduced by stirrup method. Amplified coefficient of eccentricity was regressed based on computed results of nonlinear program, and mid-long columns capacity was deduced. Input the computation formula into Excel, capacity was calculated by exhaustion the compression zone depth of concrete. Calculation results were agreed well with the tested ones.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tongfeng Zhao

In the present study, an experimental research was conducted on square steel tube confined steel reinforced concrete column under eccentric load. The major parameters of the specimens included slenderness ratio, eccentricity ratio, and structural steel reinforced ratio. According to the tested results, the eccentricity ratio, from 0 to 0.55, significantly affects the structural bearing capacity. The slenderness ratio, from 3 to 8, and steel reinforced ratio, from 0.3 to 0.41, slightly affect the capacity. Furthermore, a numerical analysis program was developed, and the calculated results are well consistent with the experimental results. Also, the theoretical formula for eccentrically loaded columns was proposed based on numerical results.


2012 ◽  
Vol 193-194 ◽  
pp. 1418-1423
Author(s):  
Zhi Jie Liu ◽  
Jun Hai Zhao ◽  
Xu Guang Yu ◽  
Gai Qin Su ◽  
Xin Zhao

The eccentric ultimate load calculation formula of square steel tube columns filled with steel-reinforced concrete was derived based on the Unified Strength Theory in this paper. The influence of intermediate principal stress and the restriction effect and the decrease of longitudinal stress were considered in the formula. Based on the axial compression load and the effect of consider the eccentricity ratio and slenderness ratio on the hearing capacity was considered, by introducing the reduction factor of concrete strength and the equivalent restriction reduction factor, the confinement of square steel tube towards concrete was equivalent to the confinement of circular steel tube towards it, based on unified strength theory solutions of thick tube, the calculation formula of eccentric compression bearing capacity of square steel tube columns filled with steel-reinforced concrete was deduced and analysed the influence complication. The results indicate unified strength theory has the good applicability and the solution has an important practical value for engineering application.


2012 ◽  
Vol 166-169 ◽  
pp. 908-913
Author(s):  
Wei Ouyang

This paper presents a nonlinear analysis of square steel tube columns filled with steel reinforced concrete subjected to bi-compression bending load. Calculated results agree well with the tested results. Further, Different parameters of members were analyzed using nonlinear analysis procedure. Results showed that Slenderness ratio, stirrup ratio and eccentricity ratio have tremendous influence on capacity and initial stiffness. Steel reinforced ratio and eccentricity angle have secondary influence on capacity and initial stiffness.


2001 ◽  
Vol 28 (4) ◽  
pp. 583-592 ◽  
Author(s):  
Amin Ghali ◽  
Tara Hall ◽  
William Bobey

To avoid excessive deflection most design codes specify the ratio (l/h)s, the span to minimum thickness of concrete members without prestressing. Use of the values of (l/h)s specified by the codes, in selecting the thickness of members, usually yields satisfactory results when the members are reinforced with steel bars. Fibre reinforced polymer (FRP) bars have an elastic modulus lower than that of steel. As a result, the values of (l/h)s specified in codes for steel-reinforced concrete would lead to excessive deflection if adopted for FRP-reinforced concrete. In this paper, an equation is developed giving the ratio (l/h)f for use with FRP bars in terms of (l/h)s and (εs/εf), where εs and εf are the maximum strain allowed at service in steel and FRP bars, respectively. To control the width of cracks, ACI 318-99 specifies εs = 1200 × 10–6 for steel bars having a modulus of elasticity, Es, of 200 GPa and a yield strength, fy, of 400 MPa. At present, there is no value specified for εf; a value is recommended in this paper.Key words: concrete, cracking, deflection, fibre reinforced polymers, flexural members, minimum thickness.


2011 ◽  
Vol 243-249 ◽  
pp. 929-933
Author(s):  
Na Ha ◽  
Lian Guang Wang ◽  
Shen Yuan Fu

In order to improve the bearing capacity of SRC which is related with deformation and stiffiness, SRC beams should be strengthened by CFRP. Based on the experiment of six pre-splitting steel reinforced concrete beams strengthened with (Prestressed) CFRP sheets, the deformation of beams are discussed. Load-deformation curves are obtained by the experiment. Considering the influence of intial bending moment on SRC beams, the calculated deformation formulas of SRC beams strengthened by (Prestressed) CFRP are deduced. The results showed that the load-deformation curves of normal and strengthened beams respectively showed three and two linear characteristics. The theoretical results which calculated by the formulas of deformation are well agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document