Analysis on Flexural Capacity of FRP Reinforced Concrete Members

2012 ◽  
Vol 446-449 ◽  
pp. 98-101
Author(s):  
Chun Xia Li ◽  
Zhi Sheng Ding ◽  
Shi Lin Yan

The balanced reinforcement ratio of FRP-reinforced concrete members and the flexural capacity under two different failure modes (concrete crushing and FRP rupture) are established, based on the analysis on flexural capacity of steel-reinforced concrete members in current concrete code. The effect of material properties on the balanced ratio, the variation of flexural capacity with different reinforcement ratio and a simplified nominal flexural capacity under FRP-rupture failure are derived.

2010 ◽  
Vol 163-167 ◽  
pp. 1574-1577 ◽  
Author(s):  
Tong Feng Zhao ◽  
Hong Nan Li ◽  
Jia Huan Yu

Moment-deformation curves of square steel tube filled with steel reinforced concrete subjected to bending load were simulated by the ABAQUS software. Calculated and experimental curves agreed well with each other. Through studying further the calculated member, the behavior of materials subjected to moment is given. Finally, flexural capacity formula of square steel tube filled with cross steel reinforced concrete is proposed.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6400
Author(s):  
Binbin Zhou ◽  
Ruo-Yang Wu ◽  
Yangqing Liu ◽  
Xiaohui Zhang ◽  
Shiping Yin

Through proper arranging of a hybrid combination of longitudinal fiber reinforced polymer (FRP) bars and steel bars in the tensile region of the beam, the advantages of both FRP and steel materials can be sufficiently exploited to enhance the flexural capacity and ductility of a concrete beam. In this paper, a methodology for the flexural strength design of hybrid FRP-steel reinforced concrete (RC) beams is proposed. Firstly, based on the mechanical features of reinforcement and concrete and according to the latest codified provisions of longitudinal reinforcement conditions to ensure ductility level, the design-oriented allowable ranges of reinforcement ratio corresponding to three common flexural failure modes are specified. Subsequently, the calculation approach of nominal flexural strength of hybrid FRP-steel RC beams is established following the fundamental principles of equilibrium and compatibility. In addition to the common moderately-reinforced beams, the proposed general calculation approach is also applicable to lightly-reinforced beams and heavily-reinforced beams, which are widely used but rarely studied. Furthermore, the calculation process is properly simplified and the calculation accuracy is validated by the experimental results of hybrid FRP-steel RC beams in the literature. Finally, with the ductility analysis, a novel strength reduction factor represented by net tensile steel strain and reinforcement ratio is proposed for hybrid FRP-steel RC beams.


2019 ◽  
Vol 22 (11) ◽  
pp. 2406-2417 ◽  
Author(s):  
Yunlong Yu ◽  
Bo Wei ◽  
Yong Yang ◽  
Yicong Xue ◽  
Hao Xue

In long-span floors, the use of composite slim floor beams can effectively improve the flexural stiffness and flexural capacity of the floor system. In order to strengthen the stiffness of the composite slim floor beams and achieve better fire resistance, an innovative steel-reinforced concrete slim floor beams is presented in this article. To investigate the flexural performance of the steel-reinforced concrete slim floor beams, static loading experiments were carried out on six specimens. The parameters of the test were the height of slim floor beams and the type and size of steel shape in the steel-reinforced concrete slim floor beams. On the basis of the experiment, the bending failure modes, flexural stiffness, and flexural capacity of the steel-reinforced concrete slim floor beams were studied comprehensively. The test results indicated that the steel-reinforced concrete slim floor beams exhibited great flexural capacity, large stiffness, and high ductility. The calculation formulas of flexural stiffness and flexural capacity were also proposed in this article. The analysis of flexural performance of the steel-reinforced concrete slim floor beams can provide a significant foundation for further research.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3255 ◽  
Author(s):  
Fang Yuan ◽  
Mengcheng Chen

Fibre-reinforced polymer (FRP)-reinforced concrete members exhibit low ductility due to the linear-elastic behaviour of FRP materials. Concrete members reinforced by hybrid FRP–steel bars can improve strength and ductility simultaneously. In this study, the plastic hinge problem of hybrid FRP–steel reinforced concrete beams was numerically assessed through finite element analysis (FEA). Firstly, a finite element model was proposed to validate the numerical method by comparing the simulation results with the test results. Then, three plastic hinge regions—the rebar yielding zone, concrete crushing zone, and curvature localisation zone—of the hybrid reinforced concrete beams were analysed in detail. Finally, the effects of the main parameters, including the beam aspect ratio, concrete grade, steel yield strength, steel reinforcement ratio, steel hardening modulus, and FRP elastic modulus on the lengths of the three plastic zones, were systematically evaluated through parametric studies. It is determined that the hybrid reinforcement ratio exerts a significant effect on the plastic hinge lengths. The larger the hybrid reinforcement ratio, the larger is the extent of the rebar yielding zone and curvature localisation zone. It is also determined that the beam aspect ratio, concrete compressive strength, and steel hardening ratio exert significant positive effects on the length of the rebar yielding zone.


2001 ◽  
Vol 28 (4) ◽  
pp. 583-592 ◽  
Author(s):  
Amin Ghali ◽  
Tara Hall ◽  
William Bobey

To avoid excessive deflection most design codes specify the ratio (l/h)s, the span to minimum thickness of concrete members without prestressing. Use of the values of (l/h)s specified by the codes, in selecting the thickness of members, usually yields satisfactory results when the members are reinforced with steel bars. Fibre reinforced polymer (FRP) bars have an elastic modulus lower than that of steel. As a result, the values of (l/h)s specified in codes for steel-reinforced concrete would lead to excessive deflection if adopted for FRP-reinforced concrete. In this paper, an equation is developed giving the ratio (l/h)f for use with FRP bars in terms of (l/h)s and (εs/εf), where εs and εf are the maximum strain allowed at service in steel and FRP bars, respectively. To control the width of cracks, ACI 318-99 specifies εs = 1200 × 10–6 for steel bars having a modulus of elasticity, Es, of 200 GPa and a yield strength, fy, of 400 MPa. At present, there is no value specified for εf; a value is recommended in this paper.Key words: concrete, cracking, deflection, fibre reinforced polymers, flexural members, minimum thickness.


1996 ◽  
Vol 23 (6) ◽  
pp. 1172-1179 ◽  
Author(s):  
R. Masmoudi ◽  
B. Benmokrane ◽  
O. Chaallal

This paper presents the results of an experimental investigation on the cracking behaviour of concrete beams reinforced with fiber reinforced plastic rebars. The effects of reinforcement ratio on the cracking pattern, crack spacing, cracking moment, and crack width are investigated. The test results indicate that the reinforcement ratio has no meaningful effect on the cracking moment, which can be calculated as recommended by the ACI code. Also, the use of the equations adopted by ACI and the European codes for the prediction of crack width of conventionally reinforced concrete members is investigated and due modifications are made. Both relationships show good correlation with the test results; and the prediction of crack width of concrete beams reinforced with these two types of fiber reinforced plastic rebars is now possible. Key words: beam, cracking behaviour, cracking moment, crack width, fiber reinforced plastic, flexure, rebars, reinforced concrete, reinforcement ratio.


Author(s):  
Kimitaka UJI ◽  
Kentaro OHNO ◽  
Ayano NAKASHIMA ◽  
Katsuro KOKUBU ◽  
Kazuhisa SHIMIZU

Author(s):  
Gregoria M. Kotsovou ◽  
Afaq Ahmad ◽  
Demetrios M. Cotsovos ◽  
Nikos D. Lagaros

2019 ◽  
Vol 35 (2) ◽  
pp. 1023-1043 ◽  
Author(s):  
Danilo Tarquini ◽  
João P. Almeida ◽  
Katrin Beyer

This data paper presents the quasi-static uniaxial cyclic tests of 24 reinforced concrete members, of which 22 feature lap splices and 2 are reference units with continuous reinforcement. The objective of the experimental program is to investigate the influence of lap splice length ( ls), confining reinforcement, and loading history on the behavior of lap splices. Particular attention is placed on the measurement of local deformation quantities, such as lap splice strains and rebar-concrete slip. Details of the geometry and reinforcement layout of the specimens as well as the employed test setup, instrumentation, and loading protocols are provided. The global behavior of the test units, including the observed crack pattern and failure modes, are discussed. The organization of the experimental data, which are made available for public use under DOI: 10.5281/zenodo.1205887, is outlined in detail.


Sign in / Sign up

Export Citation Format

Share Document