Nonlinear Stability Analysis of Qijiadu Long-Span Deck-Type CFST Arch Bridge

2010 ◽  
Vol 163-167 ◽  
pp. 1685-1691
Author(s):  
Liang Xu ◽  
Ya Ping Wu

With the application of the composition material-concrete-filled-steel-tube (CFST) in civil engineering, the crossing ability of arch bridge gets advanced development. Therefore, it is of interesting to study the stability of such long-span arch bridges, especially which have small width, for the bridge’s safety under long term operation. The present study focuses on studies the transverse stability of long-span arch bridges with small width. To this purpose, a deck type CFST arch-bridge in Gansu Province is adopted as an example. The arch bridge has a span of 180 m, and its width-span ratio is 1/25.7. The finite element method with a special beam element is employed to analyze the stability. The analyses are carried out for the transverse stability of the bridge during construction and under service, respectively. Furthermore, the influence of the spandrel structure and deck elastic restraints to the stability is investigated taking account of geometrical and material nonlinearity.

2012 ◽  
Vol 446-449 ◽  
pp. 1199-1202
Author(s):  
Yan Jiang Chen ◽  
Xiao Qiang Ren ◽  
Jin Jie Wang ◽  
Da Peng Gu

Abstract. This paper lists the problems during the stability analysis of long span CFST arch bridge and the corresponding modeling method. Based on the construction control of an orthotropic long span CFST arch bridge, a FEM model had been established to analysis the stability of its rib during the concrete pumping. The conclusion shows significant importance to the bridge’s construction process.


2013 ◽  
Vol 438-439 ◽  
pp. 917-922
Author(s):  
Zhi Wei Sun ◽  
Xiao Guang Wu

Monitoring and controlling of vertical construction for main arch ribs is most important for concrete-filled steel tube (CFST) arch bridges due to high risk. Controlling the difference of elevation between the two main arch ribs has direct influence on the mechanical behavior of lateral brace, towers and temporary hinges at arch abutments of main piers. Therefore, transverse synchronization control is the main priority in vertical rotating construction phase. Taking a half-through CFST arch bridge in Shijiazhuang City as an example, this paper make a study of transverse synchronization control of the two main arch ribs during vertical rotation. The finite element method (FEM) software-Midas is employed to simulate the main arch ribs in rotation construction phase, and maximum value of the difference of elevation between the two main arch ribs is obtained to offer reference and basis of vertical rotation construction of this bridge.


2011 ◽  
Vol 255-260 ◽  
pp. 962-966
Author(s):  
Fan Xing ◽  
Lin Zhao ◽  
Ya Zhe Xing

In view of huge destructibility of the near-fault ground motions, structures with long natural vibration period are liable to fall into nonlinear reaction stage. Based on a full understanding of the near-fault seismic spectrum characteristics, the out-of-plane seismic response of a long span concrete-filled steel tube (CFST) arch bridge was studied in depth, and the research result could offer a reference for near-fault aseismic design.


2012 ◽  
Vol 226-228 ◽  
pp. 1679-1682
Author(s):  
Yi Song Zou ◽  
Hai Tao Hou ◽  
Wei Peng

Based on reliability theory, the application calculation method of Concrete Filled Steel Tube (CFST) arch bridge system reliability index is studied. Select the most unfavorable load distribution in working condition of maximum moment and deflection at the mid-span, from the angle of strain energy, calculated the weights of CFST arch ribs component. On the basis of the grading standards of reliability assessment of the existing bridge components and the critical structures, CFST arch bridge system reliability assessment grading standards are constructed. CFST arch bridges reliability index are evaluated from two aspects (the arch ribs and segment) in this article. As the CFST arch bridge locates in the marine environment, corrosion environment is the serious level of C5-M, steel pipe corrosion is the major diseases of CFST, arch rib which on the corrosion conditions were assessed. The results show that the method can effectively assess the situation of CFST arch bridge.


Author(s):  
Hou Chao ◽  
Zhong Tieyi ◽  
Xincheng Chen ◽  
Hongbin Li ◽  
Jiawei Wang

2014 ◽  
Vol 587-589 ◽  
pp. 1586-1592 ◽  
Author(s):  
Wei Lu ◽  
Ding Zhou ◽  
Zhi Chen

A long-span cable-stayed arch bridge is a new form of bridge structure that combines features of cable-stayed bridges with characteristics of arch bridges. In the present study, we derived a practical calculation method for the lateral destabilization critical loading of cable-stayed arch bridges during the construction process based the energy principle. The validity of the method was verified with an example. The calculation method provides a quick and efficient way to evaluate the lateral stability of a cable-stayed arch bridge and a concrete filled steel tubular arch bridge during the construction process.


2012 ◽  
Vol 538-541 ◽  
pp. 3211-3214
Author(s):  
Li He ◽  
Yong Jiu Qian

The enemies pay much attention to the opponent significant bridge in modern war and future war. A number of long-span arch bridges are damaged by blast loading. According to the damage condition and damage assessment of long-span arch bridge subjected to blast loading, a variety of methods suitable for rush repair in wartime are summarized, the rationalization proposals of enhancing anti-blast ability of long-span arch bridge are proposed. The research work is meaningful for the rush repair of long-span arch bridge.


2011 ◽  
Vol 90-93 ◽  
pp. 1402-1405 ◽  
Author(s):  
Zheng Ying Li ◽  
Peng Peng Dang ◽  
De Jian Mu

For vibration control of long-span arch bridges under multi-support seismic excitation, this paper presents schemes of control to seismic responses of arch bridges with Magneto-Rheological dampers(MRD). In the semi-active control system of arch bridge-MRD, Linear Quadratic Gaussian (LQG)-based Sign function control algorithm is used to command MRD,and traveling wave effects on the responses of structure are considered. The Nimu arch bridge is used as a simulation example to verify the proposed control scheme. Numerical results show that traveling wave effects have no unfavorable influence on the control to response of arch bridge.


2014 ◽  
Vol 501-504 ◽  
pp. 1301-1304 ◽  
Author(s):  
Li Li

There are many old damaged double-curved arch bridges with design drawing lost serviced for more than 40 years are still used in West China. Based on the repair and improving the carrying capacity work of a damaged badly double-curved arch bridge whose design drawing is lost with main span of 41.0m constructed in 1962 in Sichuan province of China, health inspecting and safety assessment for this type bridge using non-destructive methods is studied. Then the strengthening design of filling concrete and enlarging the section method is proposed. High performance self-dense slight-expansion concrete and embedded bar techniques are applied in strengthening construction. After the strengthening work completed, the arch bridge is still in very good work condition experienced two devastating disasters of the 2008 Sichuan Wenchuan and the 2013 Sichuan Lushan earthquake, with the distance of bridge site to epicenter less than 100km, which proved the safety assessment and the strengthening design proposal are effective and feasible.


2010 ◽  
Vol 456 ◽  
pp. 89-102 ◽  
Author(s):  
Wei Ming Yan ◽  
Yong Li ◽  
Yan Jiang Chen

Long-span bridges are always a multi-support structural system, and seismic ground motion can vary significantly over distances comparable to the length of such kind of bridges, so it’s difficult to carry out shaking table tests because of the restriction of the dimension and amount of shaking tables. This paper discusses the multiple sub-table cordwood system is used to conduct a study on the seismic testing of a three-span irregular Concrete filled steel tubular (CFST) arch bridge with the objective of investigating the dynamic performance of the bridge under spatial earthquake motions. The development and testing of the bridge model and selected experimental results are discussed then. The seismic response and response characteristics of acceleration, displacement, internal force, and strain of the structure under earthquake excitations are gained, which can provide test data and basis to evaluate the seismic performance of this CFST arch bridge or other similar structural system design.


Sign in / Sign up

Export Citation Format

Share Document