Investigation of the Normal Working Mode of the Nigerian 330-132 kV Network in View of Perspective Load Growth Forecast up to 10 years

2007 ◽  
Vol 18-19 ◽  
pp. 87-92
Author(s):  
A.O. Melodi

In this paper the normal regimes of the Nigerian 330-132 kV power grid at 2003-2005 year levels were analyzed. The load flow studies were also carried out at perspective load growth forecast up to 10 years based on exponential trend using a program (Newton’s method). An analysis of results shows that with existing available generation and maximum load estimate by the utility there is a deficit which will persist if generation, commensurate with load growth, is not immediately reinforced. The network lacks adequate reactive power sources to maintain permissible bus voltages and the power transfer capability due to thermal constraints.

2014 ◽  
Vol 986-987 ◽  
pp. 394-399
Author(s):  
Xue Yong Xu ◽  
Pan Zhou ◽  
Qi Zhe Huang ◽  
Chun Ming Deng ◽  
Meng Meng Shi ◽  
...  

Along with the increasing use of cables in power grid and the increasing ration of distributed power sources’ synchronization, such as small hydropower’s synchronization, increasing the reactive power transmission on the line, make it difficult to achieve the balance of reactive hierarchical partition. Take a certain region’s power grid for actual examples, after the installation of magnetic control reactor (MCR), using immune genetic algorithm (IGA) to coordinate the capacity of magnetic control reactor and the existing reactive power resources, the results show that the magnetic control reactor does much good to absorb the system’s excessive reactive power and limit the voltage’s increasing.


2019 ◽  
Vol 11 (6) ◽  
pp. 1744 ◽  
Author(s):  
Qais Alsafasfeh ◽  
Omar Saraereh ◽  
Imran Khan ◽  
Sunghwan Kim

As the unconstrained integration of distributed photovoltaic (PV) power into a power grid will cause changes in the power flow of the distribution network, voltage deviation, voltage fluctuation, and so on, system operators focus on how to determine and improve the integration capacity of PV power rationally. By giving full consideration to the static security index constraints and voltage fluctuation, this paper proposes a maximum integration capacity optimization model of the PV power, according to different power factors for the PV power. Moreover, the proposed research analyzes the large-scale PV grid access capacity, PV access point, and multi-PV power plant output, by probability density distribution, sensitivity analysis, standard deviation analysis, and over-limit probability analysis. Furthermore, this paper establishes accessible capacity maximization problems from the Institute of Electrical and Electronics Engineers (IEEE) standard node system and power system analysis theory for PV power sources with constraints of voltage fluctuations. A MATLAB R2017B simulator is used for the performance analysis and evaluation of the proposed work. Through the simulation of the IEEE 33-node system, the integration capacity range of the PV power is analyzed, and the maximum integration capacity of the PV power at each node is calculated, providing a rational decision-making scheme for the planning of integrating the distributed PV power into a small-scale power grid. The results indicate that the fluctuations and limit violation probabilities of the power system voltage and load flow increase with the addition of the PV capacity. Moreover, the power loss and PV penetration level are influenced by grid-connected spots, and the impact of PV on the load flow is directional.


2020 ◽  
Vol 165 ◽  
pp. 06021
Author(s):  
Zongzu Yue ◽  
Xuhui Shen ◽  
Feng Yan

Affected by different steady-state reactive power output ratios among generators, capacitors and other reactive devices in the end-to-end power grid, voltage collapse may occur due to the failure of the receiving-end AC system, and the problem of voltage stabilization in multi-DC feed systems is particularly common. For suppressing voltage collapse, sufficient dynamic reactive power support is an effective measure, and there are some differences in the dynamic support effect of different reactive power sources. The dynamic reactive power response of the generator and its reactive power margin are two important factors affecting the coordination and optimization of the reactive power of the generator. The comprehensive evaluation index is adopted to optimize the sequencing of the reactive power output of the generator near the DC drop point. A coordinated control method of dynamic and static reactive power for DC near-point systems at different voltage levels is proposed. By controlling the steady-state reactive power output ratio between multiple reactive devices, the node voltage is maintained near the target value, and reactive power control schemes at different voltage levels can be given to meet load changes. Finally, taking the actual situation of Central China Power Grid as an example, the results of different reactive voltage control strategies are compared and analyzed, which proves that the coordinated control strategy of multiple reactive power devices can significantly improve the stability of the receiving grid voltage.


2021 ◽  
Vol 6 (2) ◽  
pp. 31-39
Author(s):  
S Adetona ◽  
M Iyayi ◽  
R Salawu

The day-to-day increase in electric energy demand with increasing population and urbanization is causing transmission facilities to transfer load at their upper limits; therefore, the probability of failures of these facilities increases. One of the ways of mitigating failures is by constructing more transmission lines; which would serve as alternatives to reduce the transmission line utilization levels (TLUL). However, there are constraints in adopting this method; therefore, the use of Interline Power Flow Controller (IPFC) has been suggested by many researchers; but very few of these studies proposed the IPFC that has capability of handling operating constraints (IPFCthC) in solving power transmission systems issues. Some of the studies that proposed the IPFCthC use trial and error approach in identifying the optimal location for its injection in multi-buses power grid. Also, some of the studies that proposed the IPFCthC do not employ it to investigate its capability in reducing TLUL. In order to reduce the TSUL in the multi-bus grid, this paper therefore proposes optimal location for the injection of IPFCthC using Transmission Line Performance Index (TLPI) and Transmission Line Reactive Power Loss (TLRPL) in Newton-Raphson Load Flow (NRLF) algorithm. The proposed algorithm was tested on IEEE-30 Test-bed in Matlab environment. The results obtained reveal that the TLUL of each of the transmission lines of the Test-bed that is not connected to PV bus is reduced averagely by 4.00 % each, with the injection of the IPFCthC in an optimally location established by the proposed algorithm.


Author(s):  
Vadim Z. Manusov ◽  
Pavel V. Matrenin ◽  
Lola S. Atabaeva

The issue of electric power grid mode of optimization is one of the basic directions in power engineering research. Currently, methods other than classical optimization methods based on various bio-heuristic algorithms are applied. The problems of reactive power optimization in a power grid using bio-heuristic algorithms are considered. These algorithms allow obtaining more efficient solutions as well as taking into account several criteria. The Firefly algorithm is adapted to optimize the placement of reactive power sources as well as to select their values. A key feature of the proposed modification of the Firefly algorithm is the solution for the multi-objective optimization problem. Algorithms based on a bio-heuristic process can find a neighborhood of global extreme, so a local gradient descent in the neighborhood is applied for a more accurate solution of the problem. Comparison of gradient descent, Firefly algorithm and Firefly algorithm with gradient descent is carried out.


Author(s):  
Ahmed Z. Abass ◽  
Dmitry A. Pavlyuchenko ◽  
Alexandr V. Prokopov ◽  
Saadallah Hussain Zozan

Analyses of a power system are important for designing and operating phase execution monitoring and to ensure reliable grid operations by sufficient protection projects settings. In this paper, electrical model of a 340 MW integrated solar combined cycle (ISCC) located in the south of Iraq, is developed by Electrical Transient Analyzer Program (ETAP) and load flow, voltage stability and short circuit analyses are performed. Impact of power grid voltage instability on system buses of the power plant is estimated. Using load flow analysis that use Newton-Raphson algorithm, buses operating at under voltage due to power grid voltage instability are specified and their voltages are improved according to given voltage limitation that are based on buses criticality with regard to loads. On-load tap changers and reactive power compensation are used to improve steady state voltage stability. Optimal position for capacitor banks placement and number of capacitor banks are proposed by using optimal capacitor placement module of ETAP. The use of modern technology and advance planning have a big impact on reducing losses. The article shows that the lack of planning is one of the main causes of energy losses. The parameters of the module also indicate the voltage limits, bus voltage and ratings of available capacitor banks. The voltage limit is set at 95% ≤ V ≤ 110%, and it is global for all buses


2013 ◽  
Vol 291-294 ◽  
pp. 2500-2503
Author(s):  
Yun Bo Guo ◽  
Li Na Xu

This paper presents a principle that compensation balance is flexible used in a certain context of the power grid load growth, in order to keep the system voltage stability and system to maximize the economic operation. Some questions are analyzed and demonstrated which.


Sign in / Sign up

Export Citation Format

Share Document