LiNi0.5Mn1.5O4 Prepared by a Solution Combustion Synthesis at Different Temperatures

2011 ◽  
Vol 186 ◽  
pp. 3-6
Author(s):  
Gui Yang Liu ◽  
Jun Ming Guo ◽  
Bao Sen Wang

LiNi0.5Mn1.5O4 powders have been prepared by a solution combustion method at 300-800oC. X-ray diffraction (XRD) and scanning electric microscope (SEM) were used to determine the phase composition and micro morphology of the products. The results indicate that the products with single phase LiNi0.5Mn1.5O4 can be obtained at 400-600oC. The electrochemical performance was tested by a coin-type battery. The product prepared at 600oC has the best electrochemical performance. The maximum capacity of the product prepared at 600oC is 135mAh/g at the current density of 30mA/g, and after 30 cycles, the capacity fades little.

2016 ◽  
Vol 697 ◽  
pp. 18-22
Author(s):  
Yan Shuang Zhang ◽  
Yu Jun Zhang ◽  
Teng Li ◽  
Qi Song Li

Nanocrystalline yttria powders were successfully synthesized by microwave-induced solution combustion method using a binary yttrium salt system with yttrium nitrate as oxidant and yttrium acetate as reductant. The process involved the redox reaction between the two yttrium salt under the heat generated by absorbing microwaves. The prepared powders were characterized by X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) to study the structure and powder morphology. The prepared powders were indicated to exhibit single-phase cubic crystalline yttria structure. The oxidant/reductant ratios and the calcination temperatures had an effect upon the particle size and powder morphology. The size of the crystallites varied in the range of 16 nm~27 nm with different reductant proportion. The powders were observed to show loosely agglomerated fractals.


Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 817 ◽  
Author(s):  
A. Luna-Flores ◽  
M.A. Morales ◽  
R. Agustín-Serrano ◽  
R. Portillo ◽  
J.A. Luna-López ◽  
...  

In this work, a novel route is discussed to produce in one step ZnO/Burkeite powders by the modified solution combustion method. The ZnO particles enhance the photocatalytic activity in the degradation of Rhodamine B, in which Burkeite mineral acts as a support due to the pH-dependent morphology of the particle aggregates of the as-synthesized powders. The X-ray diffraction (XRD) characterization shows the presence of a heterostructure: ZnO/Burkeite. The Scanning Electron Microscopy (SEM) image shows a morphological dependence with the pH of the solution used for the synthesis. The results show that the system with the highest degradation (92.4%) corresponds to the case in which ZnO/Burkeite heterostructure was synthesized with a pH 11.


2011 ◽  
Vol 25 (22) ◽  
pp. 2949-2956 ◽  
Author(s):  
ALI MOHAMMADI ◽  
YADOLAH GANJKHANLOU ◽  
MAHMOOD KAZEMZAD ◽  
ABDOLMAJID BAYANDORI MOGHADDAM ◽  
FEREIDOUN ALIKHANI HESSARI ◽  
...  

In this work, various nano-sized samples of Y 2 O 3, Y 2 O 3 :Eu and Y 2 O 3 :Eu , Sr were prepared by urea solution combustion method. Then the resultant nanopowders were investigated by means of X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and photo-luminescence emission spectra. Furthermore, the CIE color coordinate of samples were calculated from photoluminescence emission spectra. Results showed that by doping of strontium, the photoluminescence intensity and chromaticity of Y 2 O 3: Eu phosphor was enhanced while crystallite size was decreased.


2011 ◽  
Vol 142 ◽  
pp. 213-216
Author(s):  
Gui Yang Liu ◽  
Jun Ming Guo ◽  
Yan Nan Li ◽  
Bao Sen Wang ◽  
Ying He

Spinel LiMn2O4 have been prepared by a flameless solution combustion synthesis, using nitrate and acetate salts as raw materials without any fuels. The effect of ignition temperature on the phase structure, micro morphology and electrochemical performance has been studied. The results indicate that spinel LiMn2O4 with single phase can be prepared successfully by the present method at the ignition temperatures of 300-800°C and calcination temperature of 600°C for 5h. The crystallinity, dispersity of the gains and electrochemical performance of the products increase with the decreasing ignition temperatures.


2020 ◽  
Vol 59 (1) ◽  
pp. 131-143 ◽  
Author(s):  
Thanh Son Cam ◽  
Tatyana Alekseevna Vishnievskaia ◽  
Vadim Igorevich Popkov

AbstractA series of CuO/CeO2 catalysts were successfully synthesized via solution combustion method (SCS) using different fuels and tested for CO oxidation. The catalysts were characterized by energy-dispersive X-ray analysis (EDXA), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), N2 adsorption-desorption isotherms and H2 temperature-programmed reduction (H2-TPR). It was found that the used fuels strongly affected the characterization and the low-temperature reduction behavior of CuO/CeO2 catalysts. The CuO/CeO2-urea catalyst exhibited higher catalytic activity toward CO oxidation (t50=120∘C, t100=159∘C) than the 5 other synthesized catalysts. In addition, the CuO/CeO2-urea catalyst displayed high stability for CO oxidation during five cycles and water resistance. The enhanced catalytic CO oxidation of the synthesized samples can be attributed by a combination of factors, such as smaller crystallite size, higher specific surface area, larger amount of amorphous copper(II) oxide, more mesoporous and uniform spherical-like structure. These findings are worth considering in order to continue the study of the CuO/CeO2 catalyst with low-temperature CO oxidation.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1467
Author(s):  
Mir Waqas Alam ◽  
Muhammad Aamir ◽  
Mohd Farhan ◽  
Maryam Albuhulayqah ◽  
Mohamad M. Ahmad ◽  
...  

The preparation, characterization, and application of Nickel oxide (NiO)–Copper oxide (CuO)–Zinc oxide (ZnO) transition nanometal oxides have significantly enhanced their tunable properties for superior multifunctional performances compared with well-known metal oxides. NiO–CuO–ZnO nano transition metal oxides were synthesized by a simple eco-friendly solution combustion method. X-ray diffraction studies revealed distinct phases such as monoclinic, cubic, and hexagonal wurtzite for CuO, NiO, and ZnO, respectively, with NiO having the highest composition. The particle sizes were found to be in the range between 25 and 60 nm, as determined by powder X-ray diffraction. The energy bandgap values were found to be 1.63, 3.4, and 4.2 eV for CuO, ZnO, and NiO, respectively. All metal oxides exhibited a moderate degradation efficiency for AR88 dye. The results of ultraviolet–visible absorption spectra helped identify the bandgap of metal oxides and a suitable wavelength for photocatalytic irradiation. Finally, we concluded that the electrochemical studies revealed that the synthesized materials are well suitable for sensor applications.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3141 ◽  
Author(s):  
Sergey V. Ushakov ◽  
Shmuel Hayun ◽  
Weiping Gong ◽  
Alexandra Navrotsky

Phase transformations in multicomponent rare earth sesquioxides were studied by splat quenching from the melt, high temperature differential thermal analysis and synchrotron X-ray diffraction on laser-heated samples. Three compositions were prepared by the solution combustion method: (La,Sm,Dy,Er,RE)2O3, where all oxides are in equimolar ratios and RE is Nd or Gd or Y. After annealing at 800 °C, all powders contained mainly a phase of C-type bixbyite structure. After laser melting, all samples were quenched in a single-phase monoclinic B-type structure. Thermal analysis indicated three reversible phase transitions in the range 1900–2400 °C, assigned as transformations into A, H, and X rare earth sesquioxides structure types. Unit cell volumes and volume changes on C-B, B-A, and H-X transformations were measured by X-ray diffraction and consistent with the trend in pure rare earth sesquioxides. The formation of single-phase solid solutions was predicted by Calphad calculations. The melting point was determined for the (La,Sm,Dy,Er,Nd)2O3 sample as 2456 ± 12 °C, which is higher than for any of constituent oxides. An increase in melting temperature is probably related to nonideal mixing in the solid and/or the melt and prompts future investigation of the liquidus surface in Sm2O3-Dy2O3, Sm2O3-Er2O3, and Dy2O3-Er2O3 systems.


2001 ◽  
Vol 16 (4) ◽  
pp. 220-223 ◽  
Author(s):  
Hrudananda Jena ◽  
R. Asuvathraman ◽  
M. V. Krishnaiah ◽  
K. V. Govindan Kutty

Powder X-ray diffraction data are reported for RE6UO12 (RE=Eu, Gd, and Dy). The powders were prepared by a solution combustion method using urea as fuel. All compositions exhibit a rhombohedral structure with hexagonal unit cell parameters of a=1.012 67 (9) nm, c=0.9601 (1) nm for Eu6UO12; a=1.008 78 (6) nm, c=0.954 24 (7) nm for Gd6UO12; and a=0.998 06 (7) nm, c=0.944 03 (8) nm for Dy6UO12. The diffraction patterns of all the compounds are indexed on the R3¯ space group with Z=3. The a and c values decrease with increasing atomic number of the rare earth ion.


2011 ◽  
Vol 230-232 ◽  
pp. 457-460 ◽  
Author(s):  
Gui Yang Liu ◽  
Jun Ming Guo ◽  
Bao Sen Wang ◽  
Ying He

Spinel LiMn2O4 were prepared by a molten salt combustion method at 600°C. The phase composition of the products was investigated by X-ray diffraction (XRD), and the electrochemical performance was tested by a coin-type self battery. XRD results presented that the purity and the crystallinity of the products increased with extending calcining time. Single phase LiMn2O4 could be prepared at 600°C for 6 and 12h. The ratio of lithium/manganese also affected the phase compositions of the products. The purity and crystallinity of the product with the molar ratio of Li/Mn=1.1/2 were higher than these of the product with the molar ratio of Li/Mn=1.05/2. The performance tests indicated that the electrochemical performance of the product prepared at 600°C for 6h is the best. The initial discharge capacity was 112.8mAh/g, and after 20 cycles, the capacity retention is 81.8%. The product with Li/Mn=1.1/2 had better electrochemical performance than the product with Li/Mn=1.05/2.


2012 ◽  
Vol 584 ◽  
pp. 299-302 ◽  
Author(s):  
B.J. Madhu ◽  
V. Jagadeesha Angadi ◽  
H. Mallikarjuna ◽  
S.O. Manjunatha ◽  
B. Shruthi ◽  
...  

Nanoscale Nickel ferrite particles were prepared by combustion method using nickel nitrate as oxidizer and urea as a fuel. The structure of the sample is studied with X-ray diffraction (XRD) using Cu-Kα radiation. The X-ray diffraction analysis revealed the nanocrystalline nature in the prepared ferrite samples. Dielectric studies have been undertaken over a wide range of frequencies (100Hz-5MHz) for Nickel nanoferrites at room temperature. Dielectric properties such as dielectric loss tangent (D), dielectric constant (ε′ ) and dielectric loss factor (ε″) are found to decrease with the increase in the frequency. Observed variations are understood on the basis of Koop’s phenomenological model. Further, a. c. conductivity of the Nickel nanoferrite was found to increase with the increase in the frequency. Observed variation in the a. c. conductivity with the frequency has been understood on the basis of electron hopping model.


Sign in / Sign up

Export Citation Format

Share Document