Prediction of High Speed Machining Cutting Forces Using a Variable Flow Stress Machining Theory

2011 ◽  
Vol 188 ◽  
pp. 128-133 ◽  
Author(s):  
Philip Mathew

A variable flow stress machining theory is described where it is used to predict the cutting forces associated with High Speed Machining (HSM) process. The predicted and experimental results for different materials and different cutting conditions are presented and compared and it is shown that the theory developed is capable of predicting the cutting forces and the other parameters associated with the HSM process. The extension of the theory to HSM has been successful within the machining conditions presented here in this paper. Further work is necessary to improve this theory further.

Author(s):  
Xiangqin Zhang ◽  
Xueping Zhang ◽  
A. K. Srivastava

To predict the cutting forces and cutting temperatures accurately in high speed dry cutting Ti-6Al-4V alloy, a Finite Element (FE) model is established based on ABAQUS. The tool-chip-work friction coefficients are calculated analytically using the measured cutting forces and chip morphology parameter obtained by conducting the orthogonal (2-D) machining tests. It reveals that the friction coefficients between tool-work are 3∼7 times larger than that between tool-chip, and the friction coefficients of tool-chip-work vary with feed rates. The analysis provides a better reference for the tool-work-chip friction coefficients than that given by literature empirically regardless of machining conditions. The FE model is capable of effectively simulating the high speed dry cutting process of Ti-6Al-4V alloy based on the modified Johnson-Cook model and tool-work-chip friction coefficients obtained analytically. The FE model is further validated in terms of predicted forces and the chip morphology. The predicted cutting force, thrust force and resultant force by the FE model agree well with the experimentally measured forces. The errors in terms of the predicted average value of chip pitch and the distance between chip valley and chip peak are smaller. The FE model further predicts the cutting temperature and residual stresses during high speed dry cutting of Ti-6Al-4V alloy. The maximum tool temperatures exist along the round tool edge, and the residual stress profiles along the machined surface are hook-shaped regardless of machining conditions.


1999 ◽  
Vol 122 (3) ◽  
pp. 556-561 ◽  
Author(s):  
X. Yan ◽  
K. Shirase ◽  
M. Hirao ◽  
T. Yasui

The productivity of machining centers is influenced inherently by the quality of NC programs. To evaluate productivity, first an effective feedrate factor and a productivity evaluation factor are proposed. It has been found that in high-speed machining, these two factors depend on a kinematic factor which is a function of (1) command feedrate, (2) average per-block travel of the tool, (3) moving vectorial variation of the tool, and (4) ac/deceleration or time constants. Then an NC program simulator has been developed to evaluate productivity. With the simulator, the machining time can be calculated accurately and the cutting conditions can be extracted. Finally, three NC programs were implemented on high-speed machining centers and analyzed by the simulator. It was found that in mold and die machining, the productivity can be improved by increasing the acceleration and average travel and reducing the vectorial variation of the tool rather than the command feedrate. [S1087-1357(00)01303-4]


Tribology ◽  
2005 ◽  
Author(s):  
Alexander Bardetsky ◽  
Helmi Attia ◽  
Mohamed Elbestawi

Experimental study has been carried out to establish the effect of cutting conditions (speed, feed, and depth of cut) on the cutting forces and time variation of carbide tool wear data in high-speed machining (face milling) of Al-Si cast alloys that are commonly used in the automotive industry. The experimental setup and force measurement system are described. The test results are used to calibrate and validate the fracture mechanics-based tool wear model developed in Part 1 of this work. The model calibration is conducted for two combinations of cutting speed and a feed rate, which represent a lower and upper limit of the range of cutting conditions. The calibrated model is then validated for a wide range of cutting conditions. This validation is performed by comparing the experimental tool wear data with the tool wear predicted by calibrated cutting tool wear model. The prediction errors were found to be less then 7%, demonstrating the accuracy of the object oriented finite element (OOFE) modeling of the crack propagation process in the cobalt binder. It also demonstrates its capability in capturing the physics of the wear process. This is attributed to the fact that the OOF model incorporates the real microstructure of the tool material.


2020 ◽  
Vol 856 ◽  
pp. 43-49
Author(s):  
Santosh Kumar Tamang ◽  
Nabam Teyi ◽  
Rinchin Tashi Tsumkhapa

Machining is one of the major manufacturing processes that converts a raw work piece of arbitrary size into a finished product of definite shape of predetermined size by suitably controlling the relative motion between the tool and the work. Lately, machining process is shifting towards high speed machining (HSM) from conventional machining to improve and efficiently increase production, and towards dry machining from excessive coolant used wet machining to improve economy of production. And the tools used are mostly hardened alloys to facilitate HSM. The work piece materials are continually improving their properties by emergence and development of newer and high resistive super alloys (HRSA). In this paper an attempt has been made to validate an experimental result of cutting force obtained by performing HSM on an HRSA Inconel 718, by comparing it with the numerical result obtained by simulating the same setting using DEFORM 3D software. Based on the comparison it is found that the simulated results exhibit close proximity with the experimental results validating the experimental results and the effectiveness of the software.


2014 ◽  
Vol 541-542 ◽  
pp. 785-791 ◽  
Author(s):  
Joon Young Koo ◽  
Pyeong Ho Kim ◽  
Moon Ho Cho ◽  
Hyuk Kim ◽  
Jeong Kyu Oh ◽  
...  

This paper presents finite element method (FEM) and experimental analysis on high-speed milling for thin-wall machining of Al7075-T651. Changes in cutting forces, temperature, and chip morphology according to cutting conditions are analyzed using FEM. Results of machining experiments are analyzed in terms of cutting forces and surface integrity such as surface roughness and surface condition. Variables of cutting conditions are feed per tooth, spindle speed, and axial depth of cut. Cutting conditions to improve surface integrity were investigated by analysis on cutting forces and surface roughness, and machined surface condition.


2001 ◽  
Author(s):  
P. Mathew

Abstract The Oxley Machining Theory, which has been developed over the last 40 years, is presented in this paper. The capability of the model is described with its initial two-dimensional machining approach followed by the extension to the generalised model for three-dimensional machining. The theoretical results from the model are compared with the experimental results to determine the model capability. A brief description of the work associated with the effect of strain hardening at the interface is presented and comparative results are shown. A further extension of the model to intermittent cutting process of reaming is also presented and a comparison with the experimental results indicates the model developed is quite capable of predicting cutting forces for reaming. In explaining the results obtain, the assumptions made are explained and the inputs required. The limitations of the modelling approach are presented. It is pointed out that the Oxley model is a versatile model as long as proper description of the material flow stress properties is presented.


1981 ◽  
Vol 103 (1) ◽  
pp. 13-21 ◽  
Author(s):  
J. T. Black ◽  
C. R. James

A quick stop device (QSD) was designed for use in orthogonal machining and rubbing experiments. QSD’s are used to obtain chip root samples that are representative of the deformation taking place during dynamic (actual) cutting conditions. These “frozen” specimens are helpful in examining the plastic deformation that occurs in the regions of compression and shear which form the chip; the secondary shear at the tool-chip interface; and the nose ploughing/flank rubbing action which operates on the newly machined surface. The Hammer QSD employs a shear pin mechanism, broken by a flying hammer, which is traveling at the same velocity as the workpiece. The device has been successfully tested up to 6000 sfpm (30.48 m/sec).


1982 ◽  
Vol 196 (1) ◽  
pp. 141-148 ◽  
Author(s):  
G C I Lin ◽  
P Mathew ◽  
P L B Oxley ◽  
A R Watson

Using orthogonal (plane strain) machining theory together with certain simplifying assumptions based on experimental observations it is shown how the three components of cutting force in oblique machining can be predicted from a knowledge of the work material flow stress and thermal properties and the cutting conditions. A comparison of predicted and experimental cutting force results is given.


2015 ◽  
Vol 9 (6) ◽  
pp. 775-781
Author(s):  
Norfariza Wahab ◽  
◽  
Yumi Inatsugu ◽  
Satoshi Kubota ◽  
Soo-Young Kim ◽  
...  

In recent times, numerical simulation techniques have been commonly used to estimate and predict machining parameters such as cutting forces, stresses, and temperature distribution. However, it is very difficult to estimate the flow stress of a workpiece and the friction characteristics at a tool/chip interface, particularly during a high-speed cutting process. The objective of this study is to improve the accuracy of the present method and simultaneously determine the characteristics of the flow stress of a workpiece and friction at the cutting edge under a high strain rate and temperature during the cutting process. In this study, the Johnson-Cook (JC) flow stress model is used as a function of strain, strain rate, and temperature. The friction characteristic was estimated by minimizing the difference between the predicted and measured results of principal force, thrust force, and shear angle. The shear friction equation was used to estimate the friction characteristics. Therefore, by comparing the measured values of the cutting forces with the predicted results from FEM simulations, an expression for workpiece flow stress and friction characteristics at the cutting edge during a high-speed cutting process was estimated.


Sign in / Sign up

Export Citation Format

Share Document