Tool with Heavy-Duty Machining Tube Section of the Fatigue Analysis

2011 ◽  
Vol 188 ◽  
pp. 344-347 ◽  
Author(s):  
Zhong Guang Yu ◽  
Xian Li Liu ◽  
Yuan Sheng Zhai ◽  
Geng Huang He ◽  
M. Li

Because the tube festivals surface is not round, uneven, so the cutting tool is under impact unceasingly in cutting process. Cutting tool is extremely easy to have fatigue failure, therefore it is very necessary to use finite element numerical analysis software ANSYS to carry on numerical simulation analysis for heavy lathe tool intensity static. The force of cutting tool and distributed rule of definite cutting tool internal stress strain could be precisely got by using FEM, thus the analysis results could improve cutting tool stress condition and the structural design provides the theory basis

2011 ◽  
Vol 90-93 ◽  
pp. 1720-1725
Author(s):  
Si Tian Chen ◽  
Ting Ting Yang ◽  
Li Qun Wu

The numerical simulation analysis, by using senior nonlinear finite element analysis software MSC.Marc, was achieved in this paper for the tie-replacing procedures of a steel tube tied-arch filled with concrete. Through this analysis, the control parameters were accurately determined for the installing of new ties and the removing of old ties. Results of numerical analysis ensured the bridge structure stable during the replacement, made the construction of safe and convenient, and played a guiding role in the maintenance and reinforcement. The successful experience could be referenced by other similar projects.


2012 ◽  
Vol 204-208 ◽  
pp. 4455-4459 ◽  
Author(s):  
Liu Hong Chang ◽  
Chang Bo Jiang ◽  
Man Jun Liao ◽  
Xiong Xiao

The explicit dynamic finite element theory is applied on the collision of ships with buoys for computer simulation. Using ANSYS/LS-DYNA finite element analysis software, the numerical simulation of the collision between the ton ship and the buoy with different structures and impact points. The collision force, deformation, displacement parameters and the weak impact points of a buoy are obtained. Based on the numerical simulation results, analysis of buoys and structural collision damages in anti-collision features are discussed, and several theoretical sugestions in anti-collision for the design of buoy are provided.


2019 ◽  
Vol 130 ◽  
pp. 01001
Author(s):  
Agri Suwandi ◽  
Dede Lia Zariatin ◽  
Bambang Sulaksono ◽  
Estu Prayogi ◽  
I Made Widana

The fishing deck machinery is the tools used to collect fish in fishing activities. Fishing deck machinery is intended to improve the effectiveness of fishing operations. The mission of the Ministry of Marine Affairs and Fishery Year 2015-2019 in the Regulation of the Minister of Marine and Fisheries No. 45/PERMEN-KP/2015 which is a priority is to provide assistance for fishing facilities for fishermen; it is necessary to develop and optimize fishing deck machinery. To assure the safety and dependability of these fishing deck machinery, calculations, simulation and functional tests are needed. This paper discusses the prediction of structural failure in the design of fishing deck machinery a hydraulic type with finite element method simulation approach. The results of the FEM simulation analysis are (i) the maximum value of von-Mises stress is greater than the ultimate tensile strength of the material; (ii) 1st principal stress value minimum is smaller than the ultimate tensile strength of material; (iii). the Poisson ratio value higher than the Poisson ratio value of the material. Base on the simulation result, the structural design of fishing deck machinery is safety.


2011 ◽  
Vol 675-677 ◽  
pp. 921-924 ◽  
Author(s):  
Ming Wei Wang ◽  
Chun Yan Wang ◽  
Li Wen Zhang

Vacuum hot bulge forming (VHBF) is becoming an increasingly important manufacturing process for titanium alloy cylindrical workpiece in the aerospace industries. Finite element simulation is an essential tool for the specification of process parameters. In this paper, a two-dimensional nonlinear thermo-mechanical couple FE model was established. Numerical simulation of vacuum hot bulge forming of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC.Marc. The effects of process parameter on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece was analyzed by numerical simulation. The proposed an optimized vacuum hot bulge forming process parameters and die size. And the corresponding experiments were carried out. The simulated results agreed well with the experimental results.


2020 ◽  
pp. 2150002
Author(s):  
XIAOLI LI ◽  
LI CHEN ◽  
XIAOYAN LIU ◽  
YU ZHANG ◽  
LIFU CUI

The geological environment along a buried pipeline in permafrost regions is complex, where differential frost heave often occurs. To understand the changes in the stress behavior of pipeline structures caused by corrosion while laying them in permafrost regions, we established a thermo-mechanical coupling model of buried pipeline with corrosion defects by using finite element software. Numerical simulation analysis of buried pipeline was conducted. The effects of the frost heave length, the length of the transition section, the corrosion depth, and the corrosion length on the stress displacement were obtained. These analyses showed that the stresses and displacements of the pipeline with corrosion defects in permafrost regions can be simulated by using the finite element software numerical simulation method. Afterward, the corrosion resistances of pipelines with different corrosion lengths and depths were investigated via an electrochemical testing method. These results can provide some useful insights into the possible mechanical state of buried pipeline with regard to their design and construction, as well as some useful theoretical references for simulating real-time monitoring and safety analysis for their operation in permafrost regions.


2014 ◽  
Vol 1025-1026 ◽  
pp. 955-958 ◽  
Author(s):  
Jun Jie Shi ◽  
Ya Nan Li ◽  
Li Qin

The theoretical study of galloping can effectively promote anti-galloping techniques. Cable element is utilized to imitate the bundled conductor, and beam elements are used to simulated the spacers, established galloping finite element analysis model which can consider sub-conductors wake interference. The finite element equation was solved by time integration method and the calculation program was compiled by MATLAB. Through numerical simulation analysis, compared the dancing in the case of considering the effect of the sub-conductor wake and ignoring the effect of the sub-conductor wake. The results showed that considering the effect of the wake on aerodynamic loads has a greater vertical vibration amplitude. This method can provide reference for the study of prevention technology on dancing.


2011 ◽  
Vol 291-294 ◽  
pp. 418-422
Author(s):  
Ge Gang Zhu ◽  
Chen Xu ◽  
Long Yi ◽  
Ning Li

The design and numerical simulation and analysis on non-pneumatic beehive damping tire were discussed in this paper by finite element techniques. And use the molding software filling its experimental to analyze the process of injection molding qualities for the reasonable mold design. And the corresponding improvement measures, the rationality of mold design and molding process were arised for quality issues according to the simulation analysis.


Sign in / Sign up

Export Citation Format

Share Document