Microstructure Characterization and Abrasive Wear Performance of HVOF Sprayed WC-Co Coatings

2011 ◽  
Vol 189-193 ◽  
pp. 707-710 ◽  
Author(s):  
Hong Tao Wang ◽  
Gang Chang Ji ◽  
Qing Yu Chen ◽  
Xue Fei Du ◽  
Wei Fu

In this paper the nanostructured and conventional WC-12Co feedstock powders were thermally sprayed via high velocity oxy-fuel (HVOF) on the mild steel substrate. The influence of the feedstock powder type on the microstructure of coatings and abrasive wear resistance properties was studied. The correlation between the coating microstructure and the wear performance was investigated by analyzing the microstructure and worn surface morphology of the coatings. The results indicated that the nanostructured coating shows higher porosity, but slightly higher microhardness and better abrasive wear resistance than the conventional counterpart. Also, the two coatings have excellent abrasive wear resistance with respect to the substrate.

2011 ◽  
Vol 211-212 ◽  
pp. 182-185 ◽  
Author(s):  
Hong Tao Wang ◽  
Gang Chang Ji ◽  
Qing Yu Chen ◽  
Xue Fei Du ◽  
Wei Fu

Thermally sprayed carbide-based cermet coatings are being widely used for a variety of wear resistance applications. These coatings deposited by high velocity oxy-fuel (HVOF) technique are known to provide improved wear performance. In the present study, WC-12Co and Cr3C2-25NiCr carbide-based cermet coatings are deposited by HVOF. The microstructure and abrasion wear resistance of these coatings are compared. The correlation between coating microstructure and the coating wear behavior was investigated. The results indicated that WC-12Co coating has higher microhardness and better abrasive wear resistance in comparison to Cr3C2-25NiCr coating. The two HVOF sprayed carbide-based coatings have different abrasive wear behaviour.


2016 ◽  
Vol 61 (No. 2) ◽  
pp. 92-97
Author(s):  
P. Valášek ◽  
M. Brožek

For renovation of functional surfaces of machines and devices for agricultural production it is possible to use, in addition to conventionally used methods, polymers with fillers – composites. The presence of microparticles in the polymeric matrix improves substantially the abrasive wear resistance and hardness. This contribution describes tribological properties of epoxy resin filled with chips of ferrous metals – the change of volume losses increase in dependence on the pressure increase (load) having effect on the worn surface. From the carried out experiments the considerable decrease of filled resin losses is evident compared with the resin without filler. At the same time the exponential increase of volume losses with the increased load was quantified in the course of tribological tests.


2015 ◽  
Vol 15 (3) ◽  
pp. 17-32 ◽  
Author(s):  
A. Czupryński

Abstract The article presents the results of the study on exploitation properties of flame sprayed ceramic coatings produced by oxide ceramic material in the form of powder on the aluminum oxide Al2O3 matrix with 3% titanium oxide TiO2 addition and also on the zirconium oxide (ZrO2) matrix with 30% calcium oxide (CaO) on the substrate of unalloyed structural steel of S235JR grade. As a primer powder, metallic powder on the base of Ni-Al-Mo has been applied. Plates with dimensions of 5×200×300 mm and also front surfaces of ∅40×50 mm cylinders have been flame sprayed. Spraying of primer coating has been done using RotoTec 80 torch and external specific coating has been done with CastoDyn DS 8000 torch. Investigations of coating properties are based on metallography tests, phase composition research, measurement of microhardness, coating adhesion to the ground research (acc. to EN 582:1996 standard), abrasive wear resistance (acc. to ASTM G65 standard) and erosion wear resistance (acc. to ASTM G76-95 standard) and thermal stroke study. Performed tests have shown that the flame spraying with 97%Al2O3 powder containing 3% TiO2 and also by the powder based on zirconium oxide (ZrO2) containing 30% calcium oxide (CaO) performed in a wide range of technological parameters allow to obtain high quality ceramic coatings with thickness up to ca. 500 μm on a steel substrate. The primer coating sprayed with the Ni-Al-Mo powder to the steel substrate and external coatings sprayed has the of mechanical bonding character. The coatings are characterized by high adhesion to the substrate and also high erosion and abrasive wear resistance and the resistance for cyclic thermal stroke.


2016 ◽  
Vol 61 (3) ◽  
pp. 1363-1370 ◽  
Author(s):  
A. Czupryński ◽  
J. Górka ◽  
M. Adamiak ◽  
B. Tomiczek

Abstract The paper presents the results of the properties of flame sprayed ceramic coatings using oxide ceramic materials coating of a powdered aluminium oxide (Al2O3) matrix with 3% titanium oxide (TiO2) applied to unalloyed S235JR grade structural steel. A primer consisting of a metallic Ni-Al-Mo based powder has been applied to plates with dimensions of 5×200×300 mm and front surfaces of Ø40×50 mm cylinders. Flame spraying of primer coating was made using a RotoTec 80 torch, and an external coating was made with a CastoDyn DS 8000 torch. Evaluation of the coating properties was conducted using metallographic testing, phase composition research, measurement of microhardness, substrate coating adhesion (acc. to EN 582:1996 standard), erosion wear resistance (acc. to ASTM G76-95 standard), and abrasive wear resistance (acc. to ASTM G65 standard) and thermal impact. The testing performed has demonstrated that flame spraying with 97% Al2O3 powder containing 3% TiO2 performed in a range of parameters allows for obtaining high-quality ceramic coatings with thickness up to ca. 500 µm on a steel base. Spray coating possesses a structure consisting mainly of aluminium oxide and a small amount of NiAl10O16 and NiAl32O49 phases. The bonding primer coat sprayed with the Ni-Al-Mo powder to the steel substrate and external coating sprayed with the 97% Al2O3 powder with 3% TiO2 addition demonstrates mechanical bonding characteristics. The coating is characterized by a high adhesion to the base amounting to 6.5 MPa. Average hardness of the external coating is ca. 780 HV. The obtained coatings are characterized by high erosion and abrasive wear resistance and the resistance to effects of cyclic thermal shock.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3260
Author(s):  
Dingshun She ◽  
Shihao Liu ◽  
Jiajie Kang ◽  
Wen Yue ◽  
Lina Zhu ◽  
...  

The objective of the given work was to investigate abrasive wear behaviours of titanium (Ti) treated by ultrasonic surface rolling processing (USRP) pre-treatment and plasma nitriding (PN). Simulated lunar regolith particles (SLRPs) were employed as abrasive materials during characterization of tribological performances. The experimental results showed that SLRPs cause severe abrasive wear on Ti plasma-nitrided at 750 °C via the mechanism of micro-cutting. Due to the formation of a harder and thicker nitriding layer, the abrasive wear resistance of the Ti plasma-nitrided at 850 °C was enhanced, and its wear mechanism was mainly fatigue. USRP pre-treatment was effective at enhancing the abrasive wear resistance of plasma-nitrided Ti, due to the enhancement of the hardness and thickness of the nitride layer. Nevertheless, SLRPs significantly decreased the friction coefficient of Ti treated by USRP pre-treatment and PN, because the rolling of small granular abrasives impeded the adhesion of the worn surface. Furthermore, USRP pre-treatment also caused the formation of a dimpled surface with a large number of micropores which can hold wear debris during tribo-tests, and finally, polishing and rolling the wear debris resulted in a low friction coefficient (about 0.5).


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1818
Author(s):  
Zhang Pan ◽  
Xuanpu Dong ◽  
Huatang Cao ◽  
Qiwen Huang

To investigate the role of different distribution forms of Fe–Cr–C cladding layer in the impact abrasive wear performance of Hadfield steel, the over-lapped Fe–Cr–C cladding layer and dot-shaped Fe–Cr–C cladding layer were deposited, respectively, by plasma transferred arc (PTA) cladding on Hadfield steel. The microstructure, microhardness and impact abrasive wear performance of the two cladding layers under the impact of glass sand, granite and quartz sand were investigated. The results showed that both microstructures of the cladding layers were hypoeutectic Fe–Cr–C microstructures. The average microhardness of the over-lapped cladding layer and dot-shaped cladding layer was around 560 HV0.2 and 750 HV0.2, respectively. The over-lapped Fe–Cr–C cladding layer could only improve the impact abrasive wear resistance of the Hadfield steel under the wear condition of the glass sand. Meanwhile, the dot-shaped Fe–Cr–C cladding layer could improve the impact abrasive wear resistance of the Hadfield steel under all the three kinds of the abrasives because of the overall strengthening effect of its convex shape and the hypoeutectic FeCrC microstructure.


Alloy Digest ◽  
2020 ◽  
Vol 69 (3) ◽  

Abstract Böhler K100 is a high-carbon, high-chromium (12%), alloy cold-work tool steel that is suitable for medium run tooling in applications where a very good abrasive wear resistance is needed but where demands on chipping resistance are small. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming and machining. Filing Code: TS-788. Producer or source: voestalpine Böhler Edelstahl GmbH & Co.


Alloy Digest ◽  
2019 ◽  
Vol 68 (4) ◽  

Abstract Sandvik APM 2730 is a powder metallurgical alloyed hot-isostatic-pressed high-speed tool steel with abrasive wear resistance and high-compressive strength. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on heat treating and machining. Filing Code: TS-763. Producer or source: Sandvik Steel Company.


Sign in / Sign up

Export Citation Format

Share Document