scholarly journals The Role of Distribution Forms of Fe–Cr–C Cladding Layer in the Impact Abrasive Wear Performance of Hadfield Steel

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1818
Author(s):  
Zhang Pan ◽  
Xuanpu Dong ◽  
Huatang Cao ◽  
Qiwen Huang

To investigate the role of different distribution forms of Fe–Cr–C cladding layer in the impact abrasive wear performance of Hadfield steel, the over-lapped Fe–Cr–C cladding layer and dot-shaped Fe–Cr–C cladding layer were deposited, respectively, by plasma transferred arc (PTA) cladding on Hadfield steel. The microstructure, microhardness and impact abrasive wear performance of the two cladding layers under the impact of glass sand, granite and quartz sand were investigated. The results showed that both microstructures of the cladding layers were hypoeutectic Fe–Cr–C microstructures. The average microhardness of the over-lapped cladding layer and dot-shaped cladding layer was around 560 HV0.2 and 750 HV0.2, respectively. The over-lapped Fe–Cr–C cladding layer could only improve the impact abrasive wear resistance of the Hadfield steel under the wear condition of the glass sand. Meanwhile, the dot-shaped Fe–Cr–C cladding layer could improve the impact abrasive wear resistance of the Hadfield steel under all the three kinds of the abrasives because of the overall strengthening effect of its convex shape and the hypoeutectic FeCrC microstructure.

2012 ◽  
Vol 706-709 ◽  
pp. 3028-3033 ◽  
Author(s):  
C.M. Lin ◽  
W. Wu

The current investigation discusses the effect of Mn and Si contents on the microstructure and abrasive wear characteristic in Fe-based hard-facing alloy. A series of Fe-based hard-facing alloys are successfully fabricated onto the S45C steel by gas tungsten arc welding (GTAW). Results reveal that microstructure contains great amounts of martensite phases and moderate amounts of austenite phases. Si element added into Fe-based hard-facing alloy can not obviously affect the properties of the claddings, such as martensite phase, hardness, and abrasive wear resistance. Nevertheless, Mn element added into Fe-based hard-facing alloy can efficiently affect the martensite phase, hardness, and abrasive wear resistance of the claddings. The martensite contents decreases with the increasing of Mn contents in the cladding layers. The hardness increases as the Mn contents decreases, because the martensite contents increases. The abrasive wear resistance is not only related to the hardness of the cladding layer but the martensite contents of the cladding layer. The abrasive wear resistance is an inverse proportion to Mn contents of the cladding layers. Especially, the cladding layers containing 1.4Si-0.3Mn has the highest hardness of HRC 60.1 and the lowest wear loss of 0.37g.


2020 ◽  
pp. 306-308
Author(s):  
V.S. Bochkov

The relevance of the search for solutions to increase the wear resistance of bucket teeth of excavating machine type front shovel is analyzed. The reasons for the wear of the teeth are considered. It is determined that when excavating machines work for rocks of VIII and IX categories, impact-abrasive wear of the inner side of the teeth and abrasive external wear occurs. It is proved that the cold-work hardening of Hadfield steel (the teeth material), which occurs during the excavating machine teeth work in the rocks of VIII and IX categories, reduces the impact-abrasive wear rate on the inner side of the teeth and does not affect the abrasive wear of the outer. The methods for thermomechanical treatment of the outer side of the excavating machine tooth is proposed. It can increase the wear resistance of Hadfield steel (110G13L) up to 1.7 times and lead to the self-sharpening effect of the tooth due to equalization of the wear rate of the outer and inner parts of the tooth. The efficiency factor of thermomechanical treatment to reduce the of abrasive wear rate of Hadfield steel is experimentally proved.


2020 ◽  
pp. 252-255
Author(s):  
V.I. Bolobov ◽  
V.S. Bochkov ◽  
E.V. Akhmerov ◽  
V.A. Plashchinsky ◽  
E.A. Krivokrisenko E.A.

On the example of Hadfield steel, as the most common material of fast-wearing parts of mining equipment, the effect of surface hardening by plastic deformation on their impact and abrasive wear resistance is considered. Wear test is conducted on magnetic ironstone as typical representative of abrasive and hard rock. As result of wear of initial samples with hardness of ∼200 HB and samples pre-hardened with different intensities to the hardness of 300, 337 and 368 HB, it is found that during the initial testing period, the initial samples pass the “self-cold-work hardening” stage with increase in hardness to ∼250 HB, which remains virtually unchanged during further tests; the hardness of the pre-hardened samples does not change significantly throughout the tests. It is established that the rate of impact-abrasive wear of pre-hardened samples is significantly (up to 1.4 times) lower than the original ones that are not subjected to plastic deformation, and decreases with increasing degree of cold-work hardening. Preliminary surface hardening by plastic deformation can serve as effective way to increase the service life of fast-wearing working parts of mining equipment.


2004 ◽  
Vol 120 ◽  
pp. 129-136
Author(s):  
M. Przyłęcka ◽  
W. Gęstwa ◽  
G. E. Totten

There are a variety of opinions regarding the influence of retained austenite and carbides on the properties exhibited by carbonitrided steels. In this paper, the development of a model marking relationship between phase composition, and properties of hardened carbonitrided steel has been presented. A summary of the impact of structure on properties is provided in Table 1. In the study reported here, the impact of thermal processing conditions on retained austenite and carbides was examined for carbonitrided and hardened 20 (C22), 20H (20Cr4), 15HN (17CrNi6-6) and 16HG (16MnCr5) steels. The models that are reported were experimentally validated. In particular, the results obtained for structure with respect to hardness and abrasive wear resistance were discussed for carbonitrided and hardened 20H (20Cr4) steel.


2019 ◽  
Vol 945 ◽  
pp. 574-578 ◽  
Author(s):  
L.S. Malinov ◽  
I.E. Malysheva ◽  
E.S. Klimov ◽  
V.V. Kukhar ◽  
E.Y. Balalayeva

The effect of quenching from 900°C (20 min exposure) and different tempering in the 250-650°C (for 1 hour) interval, as well as additionally preliminary carburization for 8 hours at 930°C, followed by a similar heat treatment on abrasive and shock-abrasive wear of low-carbon manganese (10-24%Mn) steels, phase composition and mechanical properties was studied. It was confirmed that an increase in the manganese reduces the abrasive wear resistance and increases the impact-abrasive wear resistance. The expediency of carburization of low-carbon manganese steels is shown in order to obtain the residual austenite in the structure which amount and stability must be optimized in relation to specific abrasive impact characterized by the dynamic ratio with taking into account the chemical composition.


2014 ◽  
Vol 1040 ◽  
pp. 148-154 ◽  
Author(s):  
Sergey Panin ◽  
Lyudmila А. Kornienko ◽  
Nguyen Xuan Thuc ◽  
Larisa R. Ivanova ◽  
Sergey V. Shilko

The abrasive wear of pure UHMWPE as well as one filled with nanoand microparticles (fibers) were investigated. It was found that abrasive wear resistance of microcomposites (containing AlO(OH) and Al2O3microparticles) can grow up by 16-18 times in comparison with pure UHMWPE depending on the strength and size of the filler as well as abrasive grit. Nanofillers (AlO(OH) and carbon nanofibers (CNF) as well as SiO2and Cu nanoparticles) as opposed to microfillers can improve abrasive wear resistance of UHMWPE in a significantly less degree (up to 50 %). Abrasive wear resistance of nanocomposites weakly depends on the type of filler and is defined by the polymeric matrix (permolecular) and counter-face abrasive grit. The comparative analysis of the wear mechanisms of UHMWPE based micro-and nanocomposites under abrasive wear (fixed abrasive particles) and dry sliding friction is carried out.


Wear ◽  
2019 ◽  
Vol 440-441 ◽  
pp. 203098 ◽  
Author(s):  
Oskari Haiko ◽  
Kati Valtonen ◽  
Antti Kaijalainen ◽  
Sampo Uusikallio ◽  
Jaakko Hannula ◽  
...  

2011 ◽  
Vol 189-193 ◽  
pp. 707-710 ◽  
Author(s):  
Hong Tao Wang ◽  
Gang Chang Ji ◽  
Qing Yu Chen ◽  
Xue Fei Du ◽  
Wei Fu

In this paper the nanostructured and conventional WC-12Co feedstock powders were thermally sprayed via high velocity oxy-fuel (HVOF) on the mild steel substrate. The influence of the feedstock powder type on the microstructure of coatings and abrasive wear resistance properties was studied. The correlation between the coating microstructure and the wear performance was investigated by analyzing the microstructure and worn surface morphology of the coatings. The results indicated that the nanostructured coating shows higher porosity, but slightly higher microhardness and better abrasive wear resistance than the conventional counterpart. Also, the two coatings have excellent abrasive wear resistance with respect to the substrate.


1990 ◽  
Vol 41 (1) ◽  
pp. 63-74 ◽  
Author(s):  
D.S. Rickerby ◽  
S.J. Bull ◽  
T. Robertson ◽  
A. Hendry

Sign in / Sign up

Export Citation Format

Share Document