A Review of Reliability Principles in Conceptual Design

2011 ◽  
Vol 199-200 ◽  
pp. 583-586
Author(s):  
Yu Lian Cui ◽  
Wei Wu

In this paper an attempt has been made to identify certain useful parts that will assist to consider reliability during conceptual design phase. The aim is to provide some thoughts and a toolkit for addressing reliability during the early stages of design, influencing design decisions and product reliability, and reducing the relying on the reliability prediction and expensive experiments in later design stage. Therefore high reliability can be cost-effectively achieved.

Author(s):  
R. J. Engel ◽  
P. J. Tyler ◽  
L. R. Wood ◽  
D. T. Entenmann

Westinghouse has been a strong supporter of Reliability, Availability, and Maintainability (RAM) principles during product design and development. This is exemplified by the actions taken during the design of the 501F engine to ensure that high reliability and availability was achieved. By building upon past designs, utilizing those features most beneficial, and improving other areas, a highly reliable product was developed. A full range of RAM tools and techniques were utilized to achieve this result, including reliability allocations, modelling, and effective redesign of critical components. These activities began during the conceptual design phase and will continue throughout the life cycle of these engines until they are decommissioned.


Author(s):  
Ryan S. Hutcheson ◽  
Irem Y. Tumer

NASA’s Ames Research center is currently designing a testbed to validate and compare potential Integrated System Health Management (ISHM) technologies. The proposed testbed represents a typical power system for a spacecraft and includes components such as a fuel cell, solar cells and redundant batteries. To fulfill design requirements, the testbed must be capable of hosting a wide variety of ISHM technologies including those developed by NASA as well as those developed in the aerospace industry abroad. An internal fault injection subsystem must be built into the system to provide a common interface for evaluating these different ISHM technologies. Additionally, to ensure robust operation of the testbed, the capability to detect and manage external faults must also be present. In order to develop a set of requirements for the internal fault injection subsystems as well as predict external faults, a comprehensive set of potential failures must be identified for all of the components of the testbed. To best aid the development of the testbed, these failures needed to be identified as early as the conceptual design phase, where little is known about the actual components that would comprise the finished system. This paper demonstrates the use a function-based failure mode identification method to identify the potential failures of the testbed during the conceptual design phase. Using this approach, designers can explore the potential failure modes at the functional design stage, before a form or solution has been determined. A function-failure database is used to associate the failures of components from previous design efforts to the testbed based on common functionality. The result is a list of potential failure modes and associated failure rates, which are used to improve the design of the testbed as well as provide a framework for the fault injection subsystem.


Author(s):  
Hyunwoong Ko ◽  
Seung Ki Moon

Additive Manufacturing (AM)’s advance from rapid prototyping to the end-of-use products inevitably challenges conventional design theories and methodologies. Especially while adopting systematic engineering design methodologies to design for AM (DfAM), it is essential to develop new design methods that explore the new design space enabled by AM’s design freedom from the early design stage. To address the challenge, this study provides a new design framework and a design method for modeling AM-enabled product behaviors in the conceptual design phase of DfAM. Firstly, this study contrasts function-based methods with affordance-based methods. The device-centric, form independent and input/output-based transformative properties of the function-based methods such as function decompositions have strengths in modeling product’s internal behaviors. However, the function-based methods show limitations in the new area of AM-enabled mass personalization which requires design approaches for representing user-centric structural design requirements acquired only by AM’s design freedom. On the other hand, the affordance-based methods can address the function-based methods in DfAM due to their user-centric (artifact-user interactive), form dependent and non-transformative properties. After the contradiction, we propose an affordance-based DfAM framework and an affordance structure as a formal modeling technique for AM-enabled personalized product behaviors. A case study of a trans-tibial prosthesis socket provides an illustration in this study. The contribution of the study is in developing a design method for the conceptual design phase of DfAM that fulfills the objectives of achieving AM-enabled mass personalization with systematic engineering design approaches.


Author(s):  
Daniel Krus ◽  
Katie Grantham Lough

When designing a product, the earlier the potential risks can be identified, the more costs can be saved, as it is easier to modify a design in its early stages. Several methods exist to analyze the risk in a system, but all require a mature design. However, by applying the concept of “common interfaces” to a functional model and utilizing a historical knowledge base, it is possible to analyze chains of failures during the conceptual phase of product design. This paper presents a method based on these “common interfaces” to be used in conjunction with other methods such as Risk in Early Design in order to allow a more complete risk analysis during the conceptual design phase. Finally, application of this method is demonstrated in a design setting by applying it to a thermal control subsystem.


2017 ◽  
Vol 107 (09) ◽  
pp. 640-646
Author(s):  
J. Jaensch ◽  
A. Neyrinck ◽  
A. Lechler ◽  
A. Prof. Verl

Maschinen und besonders Anlagen werden meist in individuellen Prozessen entwickelt. Bereits in der Angebots- und Konzeptionsphase werden im direkten Austausch mit dem Auftraggeber unterschiedliche Varianten diskutiert und iteriert. Zur Bewertung der Varianten sind neben den Anschaffungskosten unter anderem laufzeitabhängige Größen wie Taktzeiten und Energieeffizienz zu untersuchen. Der Beitrag stellt einen Ansatz zur simulationsbasierten Untersuchung für die automatisierte Variantengenerierung von Anlagen vor.   The development of machines or plants is a very individual process. Within the conceptual design phase, many different variants have to be discussed with customers and adapted to their needs. For a decent evaluation of the different variants, many parameters beyond static values such as costs are important. Term-dependent values like cycle times and energy efficiency also have to be investigated. This paper presents a method for the automated generation of plant variants based on simulation.


2018 ◽  
Vol 29 (11) ◽  
pp. 665-689
Author(s):  
C. Hartmann ◽  
R. Chenouard ◽  
E. Mermoz ◽  
A. Bernard

Sign in / Sign up

Export Citation Format

Share Document