The Research with Advanced Oxidation Technology to Degrade Organic Matter in Micro-Polluted Water

2011 ◽  
Vol 219-220 ◽  
pp. 804-808
Author(s):  
Xia Zhao ◽  
He Ming Luo ◽  
Hui Xia Feng ◽  
Jian Qiang Zhang

Potassium permanganate process is an advanced oxidation technique that can provide a resolution removing organic matter in contaminated water. In this paper, the combination of composite potassium permanganate and a certain coagulant used in this process, which it was particularly suited to rapidly oxidize and degrade pollutants. It was an effective enhanced coagulation, advanced oxidation technique that could be conducted in a normal micro-polluted water environment. A series of experiment results demonstrated that the best adding quantity of composite potassium permanganate was 1.5-3.0mg/l, the best adding quantity of PFS as the coagulant was 25mg/l. Under the above conditions, potassium permanganate oxidation obviously reduced to each pollution index and greatly improved the water quality of purification of micro-polluted water. Furthermore, the organic removal rate with composite potassium permanganate was more than the unitary potassium permanganate process and the current traditional process.

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1311
Author(s):  
Meng Li ◽  
Junfan Yuan ◽  
Bingbing Liu ◽  
Hao Du ◽  
David Dreisinger ◽  
...  

A large amount of arsenic-containing solid waste is produced in the metallurgical process of heavy nonferrous metals (copper, lead, and zinc). The landfill disposal of these arsenic-containing solid waste will cause serious environmental problems and endanger people’s health. An electrochemical advanced oxidation experiment was carried out with the cathode modified by adding carbon black and polytetrafluoroethylene (PTFE) emulsion. The removal rate of arsenic using advanced electrochemical oxidation with the modified cathode in 75 g/L NaOH at 25 °C for 90 min reached 98.4%, which was significantly higher than 80.69% of the alkaline leaching arsenic removal process. The use of electrochemical advanced oxidation technology can efficiently deal with the problem of arsenic-containing toxic solid waste, considered as a cleaner and efficient method.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Chuan Wang ◽  
Hong Liu ◽  
Yanzhen Qu

Recent years have witnessed a rapid accumulation of investigations on TiO2-based photocatalysis, which poses as a greatly promising advanced oxidation technology for water purification. As the ability of this advanced oxidation process is well demonstrated in lab and pilot scales to decompose numerous recalcitrant organic compounds and microorganism as well in water, further overpass of the hurdles that stand before the real application has become increasingly important. This review focuses on the fundamentals that govern the actual water purification process, including the fabrication of engineered TiO2-based photocatalysts, process optimization, reactor design, and economic consideration. The state of the art of photocatalyst preparation, strategies for process optimization, and reactor design determines the enhanced separation of photo-excited electron-hole (e-h) pairs on the TiO2surface. For the process optimization, the kinetic analysis including the rate-determining steps is in need. For large-scale application of the TiO2-based photocatalysis, economics is vital to balance the fundamentals and the applied factors. The fundamentals in this review are addressed from the perspective of a bridge to the real applications. This review would bring valuably alternative paradigm to the scientists and engineers for their associated research and development activities with an attempt to push the TiO2-based photocatalysis towards industrially feasible applications.


Author(s):  
Fengxun Tan ◽  
Haihan Chen ◽  
Daoji Wu ◽  
Nan Lu ◽  
Zhimin Gao

Abstract2-methylisoborneol (2-MIB) is a common odor-causing compound in drinking water with a low odor threshold (10 ng/L). Since conventional treatment processes cannot effectively remove it, this study investigated an advanced oxidation technology: UV/H


2013 ◽  
Vol 726-731 ◽  
pp. 2510-2514 ◽  
Author(s):  
Hong Ping He ◽  
De Li Wu

The quality of water from traditional two-stage biochemical treatment process of papermaking wastewater cannot meet the pollutants discharge standard of paper industry,therefore it is necessary to develop new advanced treatment processes to further treat the effluent. This paper adopts the homogeneous Fenton oxidation technology to treat the effluent from a secondary sedimentation tank of a papermaking factory by batch experiments. The optimum reaction conditions are H2O2dosage 6.54mmol/L, FeSO4.7H2O dosage 200mg/L, pH=3, t=1.5h and of all the experiments the dosage of polyacrylamide is 3ppm. The COD of the treated water is under 50mg/L and its removal rate can reach as high as 75.4%, the chroma almost falls to zero, the effluent meets the first grade of the national wastewater discharge standard. Therefore, the homogeneous Fenton is an effective alternative for papermaking wastewater advanced treatment, due to its high effect.


2014 ◽  
Vol 675-677 ◽  
pp. 367-370
Author(s):  
Ya Yun Liu ◽  
Zi Kun Chen ◽  
Ke Jun Ren ◽  
Yan Jia ◽  
Yue Xian Guo ◽  
...  

Butterfly Lake provides an important function of ecological environment and campus service for Guangdong Ocean University. Based on the data which were collected in March,May, September and December in 2013, the water environment quality of Butterfly Lake was assessed. The results show that the key pollutant of Butterfly Lake is total phosphorus (TP). The average concentration of TP is worse than the national quality standards for Class V. The water quality appears an obvious difference in different monitoring time. In September the water quality is the best. The average of single parameter pollution index (Sj) is 0.75 and the water quality belongs to good environment area. The average of integrated parameter pollution index (WQI) is 1.76 and the water quality belongs to light pollution area. In December the water quality is the worst. Sj and WQI is 1.14 and 3.14. The water quality belongs to light pollution area and moderate pollution area, respectively. The comprehensive trophic state index is 70.38 in December. The eutrophication level is hyper eutropher. The other monitoring time belongs to middle eutropher. In order to improve the water quality of Butterfly Lake,the valid measure is to strengthen the management of wastewater discharge from the laboratory and the dormitory.


2013 ◽  
Vol 746 ◽  
pp. 147-151 ◽  
Author(s):  
Jun Li ◽  
Jun Wang Tong ◽  
Shou Fang Jiang ◽  
Liu Nan ◽  
Shao Jia Wang ◽  
...  

Objectives To assess the current eutrophication and heavy metal pollution condition of South Lake by monitoring the water quality of South Lake Central Ecological Park in Tangshan city and to provide basic information and science basis for the continuity environmental monitoring and further treatment. Methods The water samples in South Lake were collected during 10th-12st May, 2011. Samples of surface water in Xixingchi, Yanglongshui, and Qingtianjing were determined temperature, pH, turbidity, dissolved oxygen (DO), biochemical oxygen demand (COD), biological oxygen demand (BOD520), total phosphorus (TP), ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, Hg, As, Cr, Cu, Zn, Ni, Pb, Cd and so on. Single water quality index and the integrated pollution index were calculated to assess water quality of sampling point. Results The sense character of all sample points did not accord with national standards.The BOD520 of Xixingchi, West Yanglongshui, North Yanglongshui and the four sampling points of Qingtianjing were more than national standards. The TP, ammonia nitrogen and nitrate nitrogen of Qingtianjings sample points exceeded national standards. Indicatorss of other sample were accord with national standards. Xixingchi, whichs comprehensive pollution index was 0.27, belonged to clean water. Yanglongshui, which`s comprehensive pollution index was 0.22, belonged to clean water too. Qingtianjing, whichs comprehensive pollution index was 1.99, belonged to polluted waters. Conclusions Xixingchi and Yanglongshui belongs to clean water. Qingtianjing belongs polluted water. The TP, ammonia nitrogen and nitrate nitrogen of Qingtianjings four sample points exceeded national standards. The severity of the pollution is: Qingtianjing>Yanglongshui>Xixingchi.


2002 ◽  
Vol 151 (1-3) ◽  
pp. 121-127 ◽  
Author(s):  
Carina A. Emilio ◽  
Wilson F. Jardim ◽  
Marta I. Litter ◽  
Héctor D. Mansilla

Manglar ◽  
2018 ◽  
Vol 15 (2) ◽  
pp. 127-134
Author(s):  
John Rimaycuna ◽  
Jorge Alemán ◽  
Percy Neyra ◽  
Dorian Aguirre ◽  
Jose Solis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document