scholarly journals TiO2-Based Photocatalytic Process for Purification of Polluted Water: Bridging Fundamentals to Applications

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Chuan Wang ◽  
Hong Liu ◽  
Yanzhen Qu

Recent years have witnessed a rapid accumulation of investigations on TiO2-based photocatalysis, which poses as a greatly promising advanced oxidation technology for water purification. As the ability of this advanced oxidation process is well demonstrated in lab and pilot scales to decompose numerous recalcitrant organic compounds and microorganism as well in water, further overpass of the hurdles that stand before the real application has become increasingly important. This review focuses on the fundamentals that govern the actual water purification process, including the fabrication of engineered TiO2-based photocatalysts, process optimization, reactor design, and economic consideration. The state of the art of photocatalyst preparation, strategies for process optimization, and reactor design determines the enhanced separation of photo-excited electron-hole (e-h) pairs on the TiO2surface. For the process optimization, the kinetic analysis including the rate-determining steps is in need. For large-scale application of the TiO2-based photocatalysis, economics is vital to balance the fundamentals and the applied factors. The fundamentals in this review are addressed from the perspective of a bridge to the real applications. This review would bring valuably alternative paradigm to the scientists and engineers for their associated research and development activities with an attempt to push the TiO2-based photocatalysis towards industrially feasible applications.

2011 ◽  
Vol 219-220 ◽  
pp. 804-808
Author(s):  
Xia Zhao ◽  
He Ming Luo ◽  
Hui Xia Feng ◽  
Jian Qiang Zhang

Potassium permanganate process is an advanced oxidation technique that can provide a resolution removing organic matter in contaminated water. In this paper, the combination of composite potassium permanganate and a certain coagulant used in this process, which it was particularly suited to rapidly oxidize and degrade pollutants. It was an effective enhanced coagulation, advanced oxidation technique that could be conducted in a normal micro-polluted water environment. A series of experiment results demonstrated that the best adding quantity of composite potassium permanganate was 1.5-3.0mg/l, the best adding quantity of PFS as the coagulant was 25mg/l. Under the above conditions, potassium permanganate oxidation obviously reduced to each pollution index and greatly improved the water quality of purification of micro-polluted water. Furthermore, the organic removal rate with composite potassium permanganate was more than the unitary potassium permanganate process and the current traditional process.


2019 ◽  
Vol 5 (6) ◽  
pp. 1113-1123 ◽  
Author(s):  
Nor Elhouda Chadi ◽  
Slimane Merouani ◽  
Oualid Hamdaoui ◽  
Mohammed Bouhelassa ◽  
Muthupandian Ashokkumar

H2O2/periodate: a novel advanced oxidation process.


2016 ◽  
Vol 32 (1) ◽  
pp. 1-47 ◽  
Author(s):  
Archina Buthiyappan ◽  
Abdul Raman Abdul Aziz ◽  
Wan Mohd Ashri Wan Daud

AbstractIn the past few years, there have been many researches on the use of different types of homogenous catalyst for the degradation of textile wastewater in conventional advanced oxidation processes (AOPs). However, homogenous AOPs suffer from few limitations, including large consumption of chemicals, acidic pH, high cost of hydrogen peroxide, generation of iron sludge, and necessity of post-treatment. Therefore, recently, there have been more researches that focus on improving the performance of conventional AOPs using heterogeneous catalysts such as titanium dioxide, nanomaterials, metal oxides, zeolite, hematite, goethite, magnetite, and activated carbon (AC). Besides, different supports such as AC that have been incorporated with transition metals and clays have been proven to have excellent catalytic activity in AOPs. This paper presents a comprehensive review of advances and prospects of catalytic AOPs for the decontamination of a wide range of synthetic and real textile wastewater. This review provides an up-to-date critical review of the information on the degradation of various textile dyes by a wide range of heterogeneous catalysts and adsorbents. The future challenges of AOPs, including chemical consumption, toxicity assessment, reactor design, and limitation of catalysts, are discussed in this paper. In addition, this paper also discusses the presence of ions, generation of by-products, and industrial applications of AOPs. Special emphasis is given to recent studies and large-scale combination of AOPs for wastewater treatment. This review paper concludes that more studies are needed for the kinetics, reactor design, and modeling of hybrid AOPs and the production of their corresponding intermediate products and secondary pollutants. A better economic model should also be developed to predict the cost of AOPs, as the treatment cost varies with dyes and textile effluents.


2011 ◽  
Vol 64 (11) ◽  
pp. 2230-2238 ◽  
Author(s):  
Y. Lester ◽  
D. Avisar ◽  
I. Gozlan ◽  
H. Mamane

Water and wastewater effluents contain a vast range of pharmaceutical chemicals. The present study aims to determine the potential of the advanced oxidation technology UV/H2O2/O3 and its sub-processes (i.e. UV, UV/H2O2, UV/O3, O3 and H2O2/O3) for the degradation of the antibiotics ciprofloxacin (CIP) and trimethoprim (TMP), and the antineoplastic drug cyclophosphamide (CPD) from water. Creating AOP conditions improved in most cases the degradation rate of the target compounds (compared with O3 and UV alone). H2O2 concentration was found to be an important parameter in the UV/H2O2 and H2O2/O3 sub-processes, acting as •OH initiator as well as •OH scavenger. Out of the examined processes, O3 had the highest degradation rate for TMP and H2O2/O3 showed highest degradation rate for CIP and CPD. The electrical energy consumption for both CIP and CPD, as calculated using the EEO parameter, was in the following order: UV > UV/O3 > UV/H2O2/O3 > O3 > H2O2/O3. Whereas for TMP O3 was shown to be the most electrical energy efficient. Twelve degradation byproducts were identified following direct UV photolysis of CIP.


2013 ◽  
Vol 39 (4) ◽  
pp. 81-91 ◽  
Author(s):  
Marcin Zieliński ◽  
Marcin Dębowski ◽  
Magda Dudek ◽  
Anna Grala

Abstract The objective of this study was to determine the effect of advanced oxidation process with the use of Fenton’s reaction on the effectiveness of anaerobic treatment of wastewaters originating from the wood industry that were characterized by a high concentration of formaldehyde. Experiments were established to analyze changes in COD content and in the concentration of formaldehyde in treated wastewaters, additional analyses were carried out to assay quantitative and qualitative changes in the biogas produced. The first stage of the experiment involved analyses of the effectiveness of the tested wastewaters treatment only in the process of methane fermentation. At the second stage of the experiment, the biological process was preceded by chemical pre-treatment of wastewaters with Fenton’s reagent. The conducted study proved that the investigated variants of chemical pre-treatment of wastewaters had a significant effect on increasing the total biogas production. In contrast, no significant effect of the applied technology was demonstrated on changes in the concentration of the analyzed contaminants in the treated wastewaters.


Author(s):  
Fengxun Tan ◽  
Haihan Chen ◽  
Daoji Wu ◽  
Nan Lu ◽  
Zhimin Gao

Abstract2-methylisoborneol (2-MIB) is a common odor-causing compound in drinking water with a low odor threshold (10 ng/L). Since conventional treatment processes cannot effectively remove it, this study investigated an advanced oxidation technology: UV/H


Sign in / Sign up

Export Citation Format

Share Document