The Flow Stress Characteristic and Constitutive Equation of 6016 Aluminum Alloy in Warm Forming

2011 ◽  
Vol 228-229 ◽  
pp. 1112-1117 ◽  
Author(s):  
Ji Xiang Zhang ◽  
Hui Wen ◽  
Wei Feng ◽  
Guo Yin An ◽  
Jin Xi Liu

In order to realize numerical simulation of warm forming and reasonably establish the warm formation process parameters for 6016 aluminum alloy, we study the forging process of 6016 aluminum alloy with warm compression experiments on the Gleele-1500 thermal simulation testing machine, and research the deformation flow stress behavior of the aluminum alloy sheet at different temperatures , strain rate under the warm forming. The results show that the deformation temperature and strain rate have significant influence on flow stress of 6016 aluminum alloy sheet, that is, the alloy is a temperature and strain rate sensitive materials, and the flow stress increases with the increase of strain rate and decreases with the increase of deformation temperature. The deformation constitutive equation of 6016 aluminum alloy is got by multiple linear regression analysis. The constitutive equation is consistent with the experimental curves rather well, which confirms the accuracy of the constitutive equation.

2012 ◽  
Vol 538-541 ◽  
pp. 1687-1692
Author(s):  
Ji Xiang Zhang ◽  
Wei Feng ◽  
Hui Wen ◽  
Guo Yin An

The flow stress behavior of 6016 aluminum alloy was investigated on the condition of temperature range from 420°C to 540°C and strain rate range from 0.001s-1to 1s-1based on hot compression experiment on Gleeble-1500 thermal simulation machine. The result shows that the flow stress of 6016 aluminum alloy decreases with the enhancement of temperature and increases with the increase of strain rate. Especially, the flow stress increases tendency becomes obvious when the strain rate greater than 0.1s-1. Based on the results above, a constitutive equation for flow stress of 6016 aluminum alloy when the temperature is above 420°C is obtained by linear regression.


2015 ◽  
Vol 1095 ◽  
pp. 579-582
Author(s):  
Rui Bin Mei ◽  
Bo Zhang ◽  
B. Cai ◽  
X.Y. Zhang ◽  
Z.T. Zou ◽  
...  

The flow stress behavior of the 7085 aluminum alloy was studied through single-pass compression experiment by using MMS-300 simulator within temperature range of 300-450°C and strain rate range of 0.01-10s-1. Dynamic recrystallization occurs in hot compression of 7085 alloy and the stress-strain curves are presented as wave with higher deformation temperature and strain rate. Increasing of deformation velocity and reducing temperature results in higher peak stress. Then a mathematical model has been developed to predict the stress-strain curves based on phenomenological representation of the curves and the traditional theories for constitutive equations which incorporate the power law. The constitutive equation expressed in terms of peak stress, peak strain and additional parameters to predict flow stress. The stress-strain curves of 7085 alloy predicted by this model are in good agreement with experimental results.


2019 ◽  
Vol 26 (3) ◽  
pp. 524-535 ◽  
Author(s):  
Wei-ping Ma ◽  
Bao-yu Wang ◽  
Wen-chao Xiao ◽  
Xiao-ming Yang ◽  
Yi Kang

2015 ◽  
Vol 21 (2) ◽  
pp. 365-373 ◽  
Author(s):  
Gaoshen Cai ◽  
Lihui Lang ◽  
Kangning Liu ◽  
Sergei Alexandrov ◽  
Dongxing Zhang ◽  
...  

2018 ◽  
Vol 777 ◽  
pp. 402-407
Author(s):  
Gui Qing Chen ◽  
Gao Sheng Fu ◽  
Xiao Dong Lin ◽  
Jun De Wang ◽  
Chao Zeng Cheng ◽  
...  

3003 aluminum melt was treated with efficient purification, and it was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0 s-1 with Gleeble-1500 thermal simulator. The results show that efficient purification treatment can significantly reduce the impurities, and make inclusion size smaller, uniform distribution. Room temperature mechanical properties were significantly improved. At the same strain rate, the flow stress of 3003 aluminum alloy decreases with the increase of deformation temperature. The flow stress increases with the increase of strain rate under the same deformation temperature. Two kinds of 3003 aluminum alloys with different purification treatments both have dynamic recrystallization characteristics. Especially when the strain rate reaches 10.0 s-1, the rheological curve appears sawtooth fluctuation and the alloy may have discontinuous dynamic recrystallization.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1038
Author(s):  
Xinxin Meng ◽  
Youxi Lin ◽  
Shaowei Mi

Because of the massive work and high cost of milling experiments, finite element analysis technology (FEA) was used to analyze the milling process of ADC12 aluminum alloy. An improved Johnson–Cook (J–C) constitutive equation was fitted by a series of dynamic impact tests in different strain rates and temperatures. It found that the flow stress gradually increases as the strain rate rises, but it decreases as the test temperature rises. Compared with the J–C constitutive model, the predicted flow stress by the improved J–C constitutive model was closer to the experimental results when the strain rate was larger than 8000 s−1 and the temperature was higher than 300 °C. A two-dimensional cycloidal cutting simulation model was constructed based on the two J–C constitutive equations which was validated by milling experiments at different cutting speeds. The simulation results based on the improved J–C constitutive equation were closer to the experimental results and showed the cutting force first increased and then decreased, with cutting speed increasing, reaching a maximum at 600 m/min.


2005 ◽  
Vol 32 (1-4) ◽  
pp. 541-560 ◽  
Author(s):  
R. Smerd ◽  
S. Winkler ◽  
C. Salisbury ◽  
M. Worswick ◽  
D. Lloyd ◽  
...  

2007 ◽  
Vol 546-549 ◽  
pp. 749-754 ◽  
Author(s):  
Hui Zhong Li ◽  
Xin Ming Zhang ◽  
Min Gan Chen ◽  
Ying Liu ◽  
Hui Gao

The deformation behavior of 2519 aluminum alloy was studied by isothermal compression by Gleeble-1500 simulator in the temperature range from 300 to 450°C under the strain rates of 0.01~10s-1. The results showed that the flow stress was controlled by strain rate and deformation temperature. The flow stress increased with strain rate and decreased with deformation temperature. The flow stress of 2519 aluminum alloy increased with strain and to the constant values at three strain rates of 0.01 s-1,0.1 s-1and1 s-1, indicating the dynamic recovery to occur. The flow stress decreased after a peak value with increase of strain at strain rate 10s-1 and deformation temperature higher than 350°C, showing partly dynamic recrystallization. The flow stress of 2519 aluminum alloy during high temperature deformation can be represented by Zener-Hollomon parameter.


2018 ◽  
Vol 920 ◽  
pp. 236-243
Author(s):  
Peng Zhou ◽  
Lei Deng ◽  
Xin Yun Wang

To study microstructure and texture evolution of 2024 aluminum alloy sheet under different loading conditions, thermal tensile and compression experiments of 2024 aluminum alloy rolled sheets were carried out at temperatures ranging from 300 °C to 450 °C and under strain rates ranging from 0.001 s-1 to 0.1 s-1. During tensile deformation, the HABs of original grains are directly elongated until abruption. DRX process occurs during compression. Dislocations appear during deformation, migrate and accumulate into LABs, and then rotate into HABs to form new grain.The three-dimensional orientation distribution functions (ODFs) in different stress states were measured, with related texture types and distribution laws compared. According to ODFs with a constant φ2, the deformation texture of {011} <100>Goss texture is gradually strengthened during thermal tension at high temperature and low strain rate (450°C/0.001s-1). The deformation texture of {011} <100>Goss texture is weakened with the strain increasing. Furthermore, the increase of deformation temperature or the decrease of strain rate slows down the weakening process of {011} <100> Goss texture, which is attributed to the recrystallization behavior during tensile deformation. Besides, since the recrystallization process proceeds more completely during hot compression, it produces a quasi-random texture.


Sign in / Sign up

Export Citation Format

Share Document