Microstructure and Mechanical Properties of Air Core Polymer Photonic Crystal Fibers

2011 ◽  
Vol 233-235 ◽  
pp. 3000-3004
Author(s):  
Hsi Hsin Chien ◽  
Kung Jeng Ma ◽  
Yun Peng Yeh ◽  
Choung Lii Chao

Polymer based photonic crystal fibers with low cost manufacturability, and the mechanical and chemical flexibility offer key advantages over traditional silica based photonic crystal fibers. PMMA photonic crystal fiber was fabricated by stacking an array of PMMA capillaries to form a preform, and followed by fusing and drawing into fiber with a draw tower. The air hole diameter and fraction of photonic crystal fiber can be manipulated by the thickness of PMMA capillaries and drawing temperature. The measurement of mechanical properties was performed by universal testing machine. The air core guiding phenomena was observed in air-core PMMA photonic crystal fiber. The ultimate tensile strength of PMMA photonic crystal fiber increases with the increase of the air-hole fraction. The mechanical strengths of all the microstructured optical fibers are higher than those of traditional PMMA fibers. This can be attributed to the introduction of more cellular interfaces which hinder the crack propagation and hence improve the mechanical strength. The plastic extension of PMMA microstructured optical fiber decreases with the increase of the air-hole fraction. Overall, the mechanical flexibility of PMMA microstructured optical fiber is superior than that of traditional PMMA optical fibers.

Nanophotonics ◽  
2013 ◽  
Vol 2 (5-6) ◽  
pp. 355-368 ◽  
Author(s):  
Ana M.R. Pinto ◽  
Manuel Lopez-Amo

AbstractA review on all-fiber lasers based on photonic crystal fibers is presented. Photonic crystal fibers present improved features beyond what conventional optical fibers can offer. Due to their geometric versatility, photonic crystal fibers can present special properties and abilities which can lead to enhanced lasing structures. A brief description of photonic crystal fibers and fiber laser’s properties is presented. All-fiber laser structures developed using photonic crystal fibers are described and divided in two groups, depending on the cavity topology: ring cavity fiber lasers and linear cavity fiber lasers. All-fiber lasers applications in the photonic crystal fiber related sensing field are described.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
IS Amiri ◽  
Ahmed Nabih Zaki Rashed

AbstractThe study has outlined various photonic crystal fibers (PCFs) configurations for the key solution to the optimization of data rates transmission. The proposed fibers that are namely octagonal photonic crystal fiber (OPCF), hexagonal photonic crystal fiber (HPCF), and elliptical photonic crystal fiber (E-PCF) are used in the system. The dispersion parameter coefficient, pulse broadening variations, and data rates transmission are examined for proposed fibers under the same fiber lengths and number of quantization level with using pulse code modulation (PCM). The system performance is enhanced with OPCF with reducing dispersion factor, pulse broadening effects and consequently increasing data rates transmission.


2020 ◽  
Vol 238 ◽  
pp. 08005
Author(s):  
Mauricio Salazar Sicacha ◽  
Vladimir P. Minkovich ◽  
Alexander B. Sotsky ◽  
Artur V. Shilov ◽  
Luidmila I. Sotskaya

The interaction of the adiabatically tapered photonic crystal fiber fundamental mode with a thin-film absorbing coating, deposited on a surface of a taper waist, on transmission of a tapered fiber is studied. Examples of using this interaction in refractive index sensors and for detection of an adsorption layer with ammonia molecules upon contact of the absorbing coating with a liquid medium are presented. It is obtained that a pronounced sensory effect occurs in the case of a resonant coupling between the fundamental fiber mode and cladding modes localized between photonic crystal fiber air channels and the absorbing coating.


2014 ◽  
Vol 62 (4) ◽  
pp. 683-689 ◽  
Author(s):  
K. Barczak

Abstract The phenomenon of optical birefringence in optical fibers is caused by external factors and stress induced by the manufacturing process. This optical birefringence makes it difficult to apply optical fibers as a polarimetric sensors head. Author of this paper, proposes the application of index guiding photonic crystal fibers because stress values in a fiber core caused by internal and external factors are lower. In this paper investigation results extended in comparison with the previous author’s investigations are presented. This extension relies on investigation of magnetooptic for wavelength 405 nm. On the basis of experimental results optimal work points of optical sensing fibers were determined.


2014 ◽  
Vol 11 (3) ◽  
pp. 1250-1256
Author(s):  
Baghdad Science Journal

Hollow core photonic bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. Dispersion, which expresses the variation with wavelength of the guided-mode group velocity, is one of the most important properties of optical fibers. Photonic crystal fibers (PCFs) offer much larger flexibility than conventional fibers with respect to tailoring of the dispersion curve. This is partly due to the large refractive-index contrast available in the silica/air microstructures, and partly due to the possibility of making complex refractive-index structure over the fiber cross section. In this paper the fundamental physical mechanism has been discussed determining the dispersion properties of PCFs, and the dispersion in a gas filled hollow core photonic crystal fiber has been calculated. We calculate the dispersion of air filled hollow core photonic crystal fiber, also calculate the dispersion of N2 gas filled hollow core photonic crystal fiber and finally we calculate the dispersion of He gas filled hollow core photonic crystal fiber.


2021 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Hieu Van Le ◽  
Bien Chu Van ◽  
Dinh Thuan Bui ◽  
Trung Le Canh ◽  
Quang Ho Dinh ◽  
...  

This paper proposes a pure silica photonic crystal fiber (PCF), having its core infiltrated with olive oil, which allows achieving an ultra-flattened normal dispersion regime. As a result, the optimization processes allows us to achieve an ultra-flat normal dispersion in the range of over 682 nm within the wavelength range from 1446 to 2128 nm. Besides, the nonlinear coefficient of the selected PCF structure is extremely high (9.54 x 109 W-1.km-1 at 1550 nm). The proposed PCF structure could be very helpful in investigating the supercontinuum generation which has many potential applications in various promising areas such as spectroscopy, medical diagnostics, etc. Full Text: PDF ReferencesJ.M.Dudley, G.Genty and S.Coen, "Supercontinuum generation in photonic crystal fiber", Rev. Mod. Phys. 78(2006). CrossRef T.Udem, R.Holzwarth and T.W.Hänsch, "Optical frequency metrology", Nature 416 233-7(2002). CrossRef S.Moon and D.Y.Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source", Opt. Express 14 11575-84 (2006). CrossRef G.P.Agrawal. "Chapter 11 - Highly Nonlinear Fibers", Nonlinear Fiber Optics (Oxford: Academic Press 2013) CrossRef V.R.K. Kumar, A.K. George, J.C. Knight, P.S.J. Russell, "Tellurite photonic crystal fiber", Opt. Exp. 11 2641-2645 (2003). CrossRef R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar and M. R. Taghizadeh, "Supercontinuum generation up to 2.5 μm in photonic crystal fiber made of lead-bismuth-galate glass", Laser Phys. Lett.7 666-72 (2010). CrossRef F.G.Omenetto, N.A.Wolchover, M.R. Wehner, M. Ross, A. Efimov, A.J. Taylor, V.V.R.K. Kumar, A.K. George, J.C. Knight, N.Y. Joly, P.St.J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 µm in sub-centimeter lengths of soft-glass photonic crystal fibers.", Opt. Express 14 4928-4934 (2010). CrossRef H. L.Van, V. C. Long, H. T. Nguyen, A. M. Nguyen, R. Buczyński, R. Kasztelanic, "Application of ethanol infiltration for ultra-flattened normal dispersion in fused silica photonic crystal fibers", Laser Physics, 28 115106 (2018). CrossRef J. Pniewski, T. Stefaniuk, H. L. Van, V. C. Long, L. C. Van, R. Kasztelanic, G. Stępniewski, A. Ramaniuk, M. Trippenbach, and R. Buczynski, "Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids", Appl. Opt. 55, 5033-5040(2016). CrossRef H. D. Quang, J. Pniewski, H. L.Van, R. Aleksandr. V. C. Long, B. Krzysztof, D. X. Khoa, K. Mariusz, and R. Buczynski, "Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses", Applied Optics, Vol. 57, No. 15, 1559-128X (2018). CrossRef M.Chemnitz,M.Gebhardt, C.Gaida, F.Stutzki, J.Kobelke, J.Limpert, A.Tünnermann and M.A. Schmidt, "Hybrid soliton dynamics in liquid-core fibres", Nat. Commun. 8 42 (2017). CrossRef S.Kedenburg, A.Steinmann, R.Hegenbarth, T.Steinle and H.Giessen, "Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response", Appl. Phys. B 117 803-16 (2014). CrossRef E.Sani and A.Dell'Oro, "Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared", Opt. Mater. 60 137-41 (2016). CrossRef S.T. Wu, "Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared", J. Appl. Phys. 84 4462-4465 (1998). CrossRef Z. Mousavi, B. Ghafary, M.H. Majles Ara, "Fifth- and third- order nonlinear optical responses of olive oil blended with natural turmeric dye using z-scan technique", Journal of Molecular Liquids, https://doi.org/10.1016/j.molliq.2019.04.077 CrossRef Web page: Refractive Index Info: https://refractiveindex.info. CrossRef I. Bodurov, I. Vlaeva, M. Marudova, T. Yovcheva, K. Nikolova, T. Eftimov, V. Plachkova, "Detection of adulteration in olive oils using optical and thermal methods", Bulgarian Chemical Communications, Volume 45, Special Issue B (pp. 81-85) (2013) DirectLink


2017 ◽  
Vol 9 (1) ◽  
pp. 5 ◽  
Author(s):  
David Poudereux ◽  
Manuel Cano-García ◽  
Domenico Alj ◽  
Roberto Caputo ◽  
Cesare Umeton ◽  
...  

Policryps structures of photo-curable adhesive NOA61 and nematic liquid crystal mixture E7 have been created inside selected microchannels of photonic crystal fibers (PCF). The PCF was selectively infiltrated with the photopolymer-liquid crystal mixture for the writing of a holographic tunable grating inside specific holes of the photonic fiber. A 2um pitch grating was successfully recorded in the PCF inner holes with and without collapsing the fiber cladding. The liquid crystal is properly aligned in both cases. Full Text: PDF ReferencesQ. Liu, et al., "Tunable Fiber Polarization Filter by Filling Different Index Liquids and Gold Wire Into Photonic Crystal Fiber", J. Lightwave Technol. 34(10), 2484 (2016). CrossRef L. Velázquez-Ibarra, A. Díez, E. Silvestre, M.V. Andrés, "Wideband tuning of four-wave mixing in solid-core liquid-filled photonic crystal fibers", Opt. Lett. 41(11), 2600 (2016). CrossRef T. Larsen, A. Bjarklev, D. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Express 11(20), 2589 (2003). CrossRef H.Y. Choi, M.J. Kim, B.H. Lee, "All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber", Opt. Express 15(9), 5711 (2007). CrossRef D. Poudereux, P. Corredera, E. Otón, J.M. Otón, X.Q. Arregui, "Photonic liquid crystal fiber intermodal interferometer" Opt. Pura Apl. 46(4), 321 (2013). CrossRef T.R. Woliński, et al., "Tunable Optofluidic Polymer Photonic Liquid Crystal Fibers", Mol. Cryst. Liq. Cryst. 619(1), 2 (2015). CrossRef D. Budaszewski, T.R. Woliński, M.A. Geday, J.M. Otón, "Photonic Crystal Fibers infiltrated with Ferroelectric Liquid Crystals", Phot. Lett. Poland, 2(3), 110 (2010). CrossRef D. Alj, S. Paladugu, G. Volpe, R. Caputo, C. Umeton, "Polar POLICRYPS diffractive structures generate cylindrical vector beams", Appl. Phys. Lett., 107(20), 201101 (2015). CrossRef A. Veltri, R. Caputo, C. Umeton, A.V. Sukhov, "Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials", Appl. Phys. Lett. 84(18), 3492 (2004). CrossRef T.J. Bunning, L.V. Natarajan, V.P. Tondiglia, R.L. Sutherland, "Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs)", Annu. Rev. Mater. Sci. 30(1), 83 (2000). CrossRef R. Caputo, L. De Sio, A.V. Sukhov, A. Veltri, C. Umeton, "Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material", Opt. Lett., 29, 1261 (2004). CrossRef A. Marino, F. Vita, V. Tkachenko, R. Caputo, C. Umeton, A. Veltri, G. Abbate, "Dynamical behaviour of holographic gratings with a nematic film --Polymer slice sequence structure", Euro. Phys. J. E 15, 47 (2004). CrossRef G. Abbate, F. Vita, A. Marino, V. Tkachenko, S. Slussarenko, O. Sakhno, J. Stumpe, "New Generation of Holographic Gratings Based on Polymer-LC Composites: POLICRYPS and POLIPHEM", Mol. Cryst. Liq. Cryst. 453(1), 1 (2006). CrossRef G. Zito, S. Pissadakis, "Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber", Opt. Lett. 38(17), 3253 (2013). CrossRef B. Sun, et al., "Unique Temperature Dependence of Selectively Liquid-Crystal-Filled Photonic Crystal Fibers", IEEE Phot. Technol. Lett. 28(12), 1282 (2016). CrossRef R. Caputo, et al., "POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications", J. Opt. A: Pure Appl. Opt. 11(2), 024017 (2009). CrossRef J. Li, S.-T. Wu, S. Brugioni, R. Meucci, S. Faetti, "Infrared refractive indices of liquid crystals", J. Appl. Phys. 97(7), 073501 (2005). CrossRef


2017 ◽  
Vol 9 (2) ◽  
pp. 51 ◽  
Author(s):  
Daniel Budaszewski ◽  
Tomasz R Woliński

In this paper, light propagation in an isotropic photonic crystal fiber as well in a silica-glass microcapillary infiltrated with a mesogenic azobenzene dye has been investigated. It appeared that light spectrum guided inside the photonic crystal fiber infiltrated with the investigated azobenzene dye depends on the illuminating wavelength of the absorption band and on linear polarization. Also, alignment of the mesogenic azobenzene dye molecules inside silica glass microcapillaries and photonic crystal fibers has been investigated. Results obtained may lead to a new design of optically tunable photonic devices. Full Text: PDF ReferencesP. Russell. St. J. "Photonic-Crystal Fibers", J. Lightwave Technol. 24, 4729 (2006). CrossRef T. Larsen, A. Bjarklev, D. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Exp. 11, 2589 (2003). CrossRef D. C. Zografopoulos, A. Asquini, E. E. Kriezis, A. d'Alessandro, R. Beccherelli, "Guided-wave liquid-crystal photonics", Lab Chip, 12, 3598 (2012). CrossRef F. Du, Y-Q. Lu, S-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber", Appl. Phys. Lett 85, 2181 (2004) CrossRef D. C. Zografopoulos, E. E. Kriezis, "Tunable Polarization Properties of Hybrid-Guiding Liquid-Crystal Photonic Crystal Fibers", J. Lightwave Technol. 27 (6), 773 (2009) CrossRef S. Ertman, M. Tefelska, M. Chychłowski, A. Rodriquez, D. Pysz, R. Buczyński, E. Nowinowski-Kruszelnicki, R. Dąbrowski, T. R. Woliński. "Index Guiding Photonic Liquid Crystal Fibers for Practical Applications", J. Lightwave Technol. 30, 1208 (2012). CrossRef D. Noordegraaf, L. Scolari, J. Laegsgaard, L. Rindorf, T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers", Opt. Expr. 15, 7901 (2007) CrossRef M. M. Tefelska, M. S. Chychlowski, T. R. Wolinski, R. Dabrowski, W. Rejmer, E. Nowinowski-Kruszelnicki, P. Mergo, "Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst. 558(1), 184 (2012). CrossRef S. Mathews, Y. Semenova, G. Farrell, "Electronic tunability of ferroelectric liquid crystal infiltrated photonic crystal fibre", Electronics Letters, 45(12), 617 (2009). CrossRef V. Chigrinov, H-S Kwok, H. Takada, H. Takatsu, "Photo-aligning by azo-dyes: Physics and applications", Liquid Crystals Today, 14:4, 1-15, (2005) CrossRef A. Siarkowska, M. Jóźwik, S. Ertman, T.R. Woliński, V.G. Chigrinov, "Photo-alignment of liquid crystals in micro capillaries with point-by-point irradiation", Opto-Electon. Rev. 22, 178 (2014); CrossRef D. Budaszewski, A. K. Srivastava, A. M. W. Tam, T. R. Woliński, V. G. Chigrinov, H-S. Kwok, "Photo-aligned ferroelectric liquid crystals in microchannels", Opt. Lett. 39, 16 (2014) CrossRef J-H Liou, T-H. Chang, T. Lin, Ch-P. Yu, "Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers", Opt. Expr. 19, (7), 6756, (2011) CrossRef T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S-T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers", Opt. Exp, 12 (24), 5857 (2004) CrossRef K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, K. Aoki, "Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer", Langmuir, 4, 1214 (1988) CrossRef http://www.beamco.com/Azobenzene-liquid-crystals DirectLink K. A. Rutkowska, K. Orzechowski, M. Sierakowski, "Wedge-cell technique as a simple and effective method for chromatic dispersion determination of liquid crystals", Phot. Lett, Poland, 8(2), 51 (2016). CrossRef L. Deng, H.-K. Liu, "Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films", Opt. Eng. 42, 2936-2941 (2003). CrossRef J. Si, J. Qiu, J. Guo, M. Wang, K. Hirao, "Photoinduced birefringence of azodye-doped materials by a femtosecond laser", Appl. Opt., 42, 7170-7173 (2008). CrossRef


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Ana M. R. Pinto ◽  
Manuel Lopez-Amo

Photonic crystal fibers are a kind of fiber optics that present a diversity of new and improved features beyond what conventional optical fibers can offer. Due to their unique geometric structure, photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications. A review of photonic crystal fiber sensors is presented. Two different groups of sensors are detailed separately: physical and biochemical sensors, based on the sensor measured parameter. Several sensors have been reported until the date, and more are expected to be developed due to the remarkable characteristics such fibers can offer.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4263 ◽  
Author(s):  
José Algorri ◽  
Dimitrios Zografopoulos ◽  
Alberto Tapetado ◽  
David Poudereux ◽  
José Sánchez-Pena

Photonic crystal fibers (PCFs) are a special class of optical fibers with a periodic arrangement of microstructured holes located in the fiber’s cladding. Light confinement is achieved by means of either index-guiding, or the photonic bandgap effect in a low-index core. Ever since PCFs were first demonstrated in 1995, their special characteristics, such as potentially high birefringence, very small or high nonlinearity, low propagation losses, and controllable dispersion parameters, have rendered them unique for many applications, such as sensors, high-power pulse transmission, and biomedical studies. When the holes of PCFs are filled with solids, liquids or gases, unprecedented opportunities for applications emerge. These include, but are not limited in, supercontinuum generation, propulsion of atoms through a hollow fiber core, fiber-loaded Bose–Einstein condensates, as well as enhanced sensing and measurement devices. For this reason, infiltrated PCF have been the focus of intensive research in recent years. In this review, the fundamentals and fabrication of PCF infiltrated with different materials are discussed. In addition, potential applications of infiltrated PCF sensors are reviewed, identifying the challenges and limitations to scale up and commercialize this novel technology.


Sign in / Sign up

Export Citation Format

Share Document