Synthesis Conditions of Nano-Hydroxyapatite Using Chondroitin Sulfate by Co-Precipitation Method

2011 ◽  
Vol 236-238 ◽  
pp. 2076-2079
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Yong Huang ◽  
Li Guo Ma ◽  
Feng Liu

The introduction of biomineralization was coupled with the co-precipitation synthesis process of nano-hydroxyapatite with the addition of chondroitin sulfate as a template agent. The effect of a variety of processing conditions on the properties of final hydroxyapatite (HA) product was investigated by orthogonal design. The ratio of calcium to phosphorus was detected by chemical analysis, the phase composition was evaluated by X-ray diffraction (XRD), and the powder morphology was characterized by transmission electron microscope (TEM). The process scheme, moreover, was optimized by the analysis of four aspects which may have different extent of influence on product properties. It can be concluded from the results that product properties can be affected remarkably by the content of chondroitin sulfate and the pH value of reactant, less remarkably by the reaction temperature and slightly by the reaction time.

2011 ◽  
Vol 311-313 ◽  
pp. 1713-1716 ◽  
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Chang An Wang ◽  
Li Guo Ma ◽  
Feng Liu

Nano-hydroxyapatite with different morphology was synthesized by the co-precipitation method coupled with biomineralization using Ca(NO3)2•4H2O and (NH4)2HPO4 as reagents, adding chondroitin sulfate, agarose and aspartic acid as template. The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM).


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7673
Author(s):  
Ziyang You ◽  
Jing Xu

The usage of nanoscale calcium silicate hydrate (nano C-S-H) proved to have an excellent promotion effect on the early performance of concrete as nano C-S-H with ultra-fine particle size can act as seeding for cement hydration. Therefore, it is of importance to tune the particle size during the synthesis process of nano C-S-H. In this paper, the influence of several variables of the particle size distribution (PSD) of nano C-S-H synthesized by chemical co-precipitation method with the aid of polycarboxylate (PCE) was studied by orthogonal experimental design. In addition, the composition, microstructure, and morphology of the C-S-H/PCE nanocomposites were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectrum. The results showed that the concentration of reactants had a significant impact on the PSD of C-S-H/PCE nanocomposites, followed by the dosage of dispersant. Ultrasonic treatment was effective in breaking the C-S-H/PCE aggregates with unstable agglomeration structures. The change in synthetic variables had a negligible effect on the composition of the C-S-H/PCE nanocomposites but had a significant influence on the crystallinity and morphology of the composites.


2015 ◽  
Vol 7 (2) ◽  
pp. 1393-1403
Author(s):  
Dr R.P VIJAYALAKSHMI ◽  
N. Manjula ◽  
S. Ramu ◽  
Amaranatha Reddy

Single crystalline nano-sized multiferroic BiFeO3 (BFO) powders were synthesized through simple chemical co-precipitation method using polyethylene glycol (PEG) as capping agent. We obtained pure phase BiFeO3 powder by controlling pHand calcination temperature. From X-ray diffraction studies the nanoparticles were unambiguously identified to have a rhombohedrally distorted perovskite structure belonging to the space group of R3c. No secondary phases were detected. It indicates single phase structure. EDX spectra indicated the appearance of three elements Bi, Fe, O in 1:1:3. From the UV-Vis diffuse reflectance spectrum, the absorption cut-off wavelength of the BFO sample is around 558nm corresponding to the energy band gap of 2.2 eV. The size (60-70 nm) and morphology of the nanoparticles have been analyzed using transmission electron microscopy (TEM).   Linear M−H behaviour and slight hysteresis at lower magnetic field is observed for BiFeO3 nanoparticles from Vibrating sample magnetometer studies. It indicates weak ferromagnetic behaviour at room temperature. From dielectric studies, the conductivity value is calculated from the relation s = L/RbA Sm-1 and it is around 7.2 x 10-9 S/m.


MRS Advances ◽  
2017 ◽  
Vol 2 (64) ◽  
pp. 4025-4030 ◽  
Author(s):  
T. Kryshtab ◽  
H. A. Calderon ◽  
A. Kryvko

ABSTRACTThe microstructure of Ni-Mg-Al mixed oxides obtained by thermal decomposition of hydrotalcite-like compounds synthesized by a co-precipitation method has been studied by using X-ray diffraction (XRD) and atomic resolution transmission electron microscopy (TEM). XRD patterns revealed the formation of NixMg1-xO (x=0÷1), α-Al2O3 and traces of MgAl2O4 and NiAl2O4 phases. The peaks profile analysis indicated a small grain size, microdeformations and partial overlapping of peaks due to phases with different, but similar interplanar spacings. The microdeformations point out the presence of dislocations and the peaks shift associated with the presence of excess vacancies. The use of atomic resolution TEM made it possible to identify the phases, directly observe dislocations and demonstrate the vacancies excess. Atomic resolution TEM is achieved by applying an Exit Wave Reconstruction procedure with 40 low dose images taken at different defocus. The current results suggest that vacancies of metals are predominant in MgO (NiO) crystals and that vacancies of Oxygen are predominant in Al2O3 crystals.


2019 ◽  
Vol 57 (3A) ◽  
pp. 21
Author(s):  
Minh Truong Xuan Nguyen ◽  
Thu Thi Minh Bui ◽  
Cuc Thi Le ◽  
Linh Huu Nguyen ◽  
Y Ngoc Pham ◽  
...  

Nickel nanostructures prepared by various methods have received considerable attentions due to their numerous applications. In this study, one-dimensional nickel nanowires (NiNWs) were synthesized by the reduction of nickel (II) chloride in polyol medium. Poly (vinylpyrrolidone) (PVP) served as the surfactant and hydrazine hydrate was used as the reductant. The effects of different experimental parameters, i.e. concentration of Ni2+, volume of N2H4, concentration of PVP and reaction temperature on the formation and morphology of NiNWs were studied. The structure, composition and surface morphology of the materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the morphology as well as the diameter of NiNWs could be effectively controlled by adjusting parameters of the synthesis process.


2019 ◽  
Vol 17 (1) ◽  
pp. 865-873 ◽  
Author(s):  
Muhammad Ramzan Saeed Ashraf Janjua

AbstractThe nano aggregates of cobalt oxide (Co3O4) are synthesized successfully by adopting simple a co precipitation approach. The product obtained was further subjected to the calcination process that not only changed it morphology but also reduces the size of individual particles of aggregates. The prepared nano aggregates are subjected to different characterization techniques such as electron microscopies (scanning electron microscopy and transmission electron microscopy) and X-ray diffraction and results obtained by these instruments are analyzed by different software. The characterization results show that, although the arrangement of particles is compact, several intrinsic spaces and small holes/ pores can also be seen in any aggregate of the product. The as synthesized product is further tested for catalytic properties in thermal decomposition of ammonium perchlorate and proved to be an efficient catalyst.


2014 ◽  
Vol 70 (6) ◽  
pp. 1004-1010 ◽  
Author(s):  
Th. I. Shalaby ◽  
N. M. Fikrt ◽  
M. M. Mohamed ◽  
M. F. El Kady

This study investigated the applicability of magnetite Fe3O4 nanoparticles coated with chitosan (CMNs) for the removal of some toxic heavy metals from simulated wastewater. Magnetic nanomaterials were synthesized using the co-precipitation method and characterized by transmission electron microscope, scanning electron microscope, X-ray diffraction, and Fourier transformer infrared spectroscopy. The magnetic properties of the prepared magnetic nanoparticles were determined by a vibrating-sample magnetometer. Batch experiments were carried out to determine the adsorption kinetics of Cr(VI) and Cd(II) by magnetic nanoparticles. It is noteworthy that CMNs show a highly efficient adsorption capacity for low concentration Cr(VI) and Cd(II) ions solution, which can reach 98% within 10 min.


2017 ◽  
Vol 16 (05n06) ◽  
pp. 1750015 ◽  
Author(s):  
Zeinab Mortazavi Milani ◽  
Razieh Jalal ◽  
Elaheh K. Goharshadi

Covalent cross-linking of enzymes to magnetite (Fe3O4) nanoparticles (MNPs) is one of the useful enzyme immobilization methods which provides repeated use of the catalyst, facilitates enzyme separation from the reaction mixture, and sometimes improves biocatalysts stability. The aim of this study was to immobilize [Formula: see text]-amylase onto MNPs via covalent attachment using carbodiimide (CDI) molecules. MNPs were synthesized by the co-precipitation method. The size and the structure of the particles were characterized by X-ray diffraction and transmission electron microscopy. The effects of different operational conditions of direct [Formula: see text]-amylase binding on MNPs in the presence of CDI were investigated by using the shaking method. Fourier transform infrared spectroscopy was used to confirm the success of immobilization. The optimum conditions and catalytic properties of immobilized [Formula: see text]-amylase were also evaluated. The efficiency of immobilization and the residual activity of the immobilized [Formula: see text]-amylase were dependent on the mass ratio of MNPs: CDI: [Formula: see text]-amylase and the immobilization temperature. The optimum pH for the free and immobilized amylase was 6. The free and immobilized [Formula: see text]-amylase showed maximum activity at 20[Formula: see text]C and 35[Formula: see text]C, respectively. The immobilized [Formula: see text]-amylase was more thermostable than the free one. The retained activity for free [Formula: see text]-amylase after 19 storage days was 57.7% whereas it was 100% for the immobilized [Formula: see text]-amylase. In repeated batch experiments, the immobilized [Formula: see text]-amylase retained a residual activity of 45% after 11 repeated uses. The [Formula: see text] and [Formula: see text] values for the immobilized enzyme were larger than those of the free enzyme. The immobilization of [Formula: see text]-amylase on MNPs using CDI improves its stability and reusability.


2010 ◽  
Vol 105-106 ◽  
pp. 286-288 ◽  
Author(s):  
Hai Yang Bo ◽  
Guo Qiang Tan ◽  
Hong Yan Miao ◽  
Ao Xia

Bismuth ferrite powders were synthesized by a simple citric acid complexing co-precipitation method at much lower temperature of 600°C. The work studies the calcination temperature and molar ratio of Fe and Bi on the structure and morphology. The as-prepared BiFeO3 powder was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscope and Fourier transform infrared spectrophotometer. The result shows that the phase pure BiFeO3 powders with cubic morphology were prepared as the calcination temperature was 600°C and molar ratio of Fe and Bi was 1:1. The nanoparticles was uniform with the size of about 200nm.


2015 ◽  
Vol 659 ◽  
pp. 604-608 ◽  
Author(s):  
Jiruntanin Kanoksinwuttipong ◽  
Wisanu Pecharapa ◽  
Russameeruk Noonuruk ◽  
Wicharn Techitdheera

Indium oxide:tin nanoparticles were synthesized by co-precipitation method using InCl3 and SnCl4·5H2O as starting precursor with different molar ratios of Sn:In. The crystalline structure, optical properties, chemical bonding and morphologies of all samples were characterized by X-ray diffraction (XRD), UV–vis spectrometer, Raman spectroscopy and field emission scanning electron microscope, respectively. The XRD results show that the crystallinity of as-synthesized powders was initially amorphous phase. After calcination at 400 °C for 2 h, a single phase ITO powder with 10% (mol%) SnO2 was obtained. The particle size of each sample is approximately 20-25 nm. The color of indium oxide:tin nanopowders after heat treatment changed from white to yellow due to the substitution of oxygen vacancies in the sample. After calcination, the intensity of Raman peak significantly decreased with increasing amount of Sn loading. This phenomenon indicates that ion substitution may occur during the synthesis process. Moreover, it is noticed that the optical absorbance of obviously changed with increasing Sn loading.


Sign in / Sign up

Export Citation Format

Share Document