Study on Saccharification and Hydrolysis in Cellulose of Bagasse

2011 ◽  
Vol 236-238 ◽  
pp. 428-431
Author(s):  
Ying Xiao Mu ◽  
Hong Xiang Zhu ◽  
Hui He ◽  
Hai Nong Song ◽  
Shuang Fei Wang ◽  
...  

The effect of the reaction time, the amount of enzyme, the reaction temperature and the pH value system, also the substrate size on bagasse pulp cellulose hydrolysis in the rate of reducing sugar was studied. And the optimum conditions response was researched. Under these conditions, we also studied the percent conversion of reducing sugar, and analyzed the changes of crystallinity after the bagasse pulp cellulose hydrolysis.

2014 ◽  
Vol 624 ◽  
pp. 82-85
Author(s):  
Ying Wang ◽  
Dan Jun Tan ◽  
Xiao Li ◽  
Fan Li ◽  
Peng Qi Wang ◽  
...  

Using FGD gypsum as raw material, calcium sulfate whisker was prepared by hydrothermal synthesis method. Through testing the aspect ratio of calcium sulfate whisker, the effect of reaction temperature, reaction time, desulfurization gypsum slurry concentration and pH value on the growth of calcium sulfate whisker were deeply researched. The optimum conditions for the preparation were that the reaction temperature was 150 °C, reaction time was 270min, the slurry concentration was 10% and the slurry pH value was 6.


2006 ◽  
Vol 10 (02) ◽  
pp. 96-103 ◽  
Author(s):  
Hai-Qiang Zeng ◽  
Quan Jiang ◽  
Yun-Fei Zhu ◽  
Xu-Hui Yan ◽  
Xue-Bo Liang ◽  
...  

Liquid phase catalytic selective hydroxylation of phenol to catechol and hydroquinone was carried out in the presence of metalloporphyrins using hydrogen peroxide as oxidant and water as solvent. Five kinds of metal tetra(p-chlorophenyl)porphrin ( T (p- Cl ) PPMCl , M = Fe , Co , Mn , Cu , Zn ) were studied. It was found that T (p- Cl ) PPFeCl had high catalytic activity and diphenol selectivity for the hydroxylation of phenol to catechol and hydroquinone. The influence of various reaction parameters, namely, reaction temperature, solvent, ratio of substrate and oxidant, substrate concentration, the amount of catalyst, reaction time and pH value were investigated systematically. When water was used as solvent (10 mL), the optimum conditions were following: pH = 7, the concentration of phenol was 0.3 g/mL, the molar ratio of phenol and H 2 O 2 was 1/2, the molar ratio of catalyst and phenol was 7/100000, the reaction temperature was 65°C and the reaction time was 1.5 h. Under above optimum conditions, the phenol conversion was up to 55.1%, and the selectivity of diphenol was almost up to 99.9%, the molar turnover numbers of the catalyst was about 7500. A possible mechanism was also proposed.


2011 ◽  
Vol 236-238 ◽  
pp. 403-410
Author(s):  
Cheng Rong Qin ◽  
Qing Wang ◽  
Xi Yao Fu ◽  
Lei Jiang ◽  
Cong He ◽  
...  

The effects of the dosage of enzyme, liquid/solid ratio, reaction temperature, PH value and reaction time on enzymolysis and saccharification of bagasse pith were studied. The results showed that the optimum conditions of enzymatic hydrolysis of cellulase were PH 5.0,the dosage of enzyme 0.005g/g (oven dry pulp), liquid/solid ratio 35:1, 50°C and s 60h. The changes of bagasse pith during reacting were analyzed through HPLC and FIRT, it were found that the content of xylose increased and improve the yield of reducing sugar in hyrolysis by double-enzymatic(cellulase and lxyanase). The results of FTIR analysis showed that new chemical construction and functional groups were not generated.


2018 ◽  
Vol 8 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Tanzer Eryilmaz

In this study, the methyl ester production process from neutralized waste cooking oils is optimized by using alkali-catalyzed (KOH) single-phase reaction. The optimization process is performed depending on the parameters, such as catalyst concentration, methanol/oil ratio, reaction temperature and reaction time. The optimum methyl ester conversion efficiency was 90.1% at the optimum conditions of 0.7 wt% of potassium hydroxide, 25 wt% methanol/oil ratio, 90 min reaction time and 60°C reaction temperature. After the fuel characteristics of the methyl ester obtained under optimum conditions were determined, the effect on engine performance, CO and NOx emissions of methyl ester was investigated in a diesel engine with a single cylinder and direct injection. When compared to diesel fuel, engine power and torque decreased when using methyl ester, and specific fuel consumption increased. NOx emission increases at a rate of 18.4% on average through use of methyl ester.


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 171
Author(s):  
Gui Bing Hong ◽  
Yi Hua Luo ◽  
Kai Jen Chuang ◽  
Hsiu Yueh Cheng ◽  
Kai Chau Chang ◽  
...  

In the scientific industry, sustainable nanotechnology has attracted great attention and has been successful in facilitating solutions to challenges presented in various fields. For the present work, silver nanoparticles (AgNPs) were prepared using a chemical reduction synthesis method. Then, a low-temperature sintering process was deployed to obtain an Ag-conductive ink preparation which could be applied to a flexible substrate. The size and shape of the AgNPs were characterized by ultraviolet–visible spectrophotometry (UV-Vis) and transmission electron microscopy (TEM). The experiments indicated that the size and agglomeration of the AgNPs could be well controlled by varying the reaction time, reaction temperature, and pH value. The rate of nanoparticle generation was the highest when the reaction temperature was 100 °C within the 40 min reaction time, achieving the most satisfactorily dispersed nanoparticles and nanoballs with an average size of 60.25 nm at a pH value of 8. Moreover, the electrical resistivity of the obtained Ag-conductive ink is controllable, under the optimal sintering temperature and time (85 °C for 5 min), leading to an optimal electrical resistivity of 9.9 × 10−6 Ω cm. The results obtained in this study, considering AgNPs and Ag-conductive ink, may also be extended to other metals in future research.


2018 ◽  
Vol 10 (3) ◽  
pp. 337-345 ◽  
Author(s):  
Chengxiang Zheng ◽  
Hua Yang ◽  
Yang Yang ◽  
Haimin Zhang

A facile sonochemical method was used to synthesize Ag3PO4 particles and the effect of pH value, reaction temperature and reaction time on the products was investigated. It is found that the samples prepared at neutral (pH = 7) and alkaline (pH = 11) environments exhibit a similar particle morphology and size. The particles are shaped like spheres with a size distribution majorly focusing on a range of 200–450 nm, and the average particle size is about 300 nm. The sample prepared at acidic environment (pH = 3) is composed of polyhedral microparticles with size of 5–8 μm. At relatively low temperatures of 20–50 °C, the spherical nanoparticles do not undergo obvious morphology/size changes; however, when the temperature is increased up to 80 °C, the nanoparticles are aggregated to form large-sized polyhedral microparticles in the size range of 4–7 μm. Compared to the pH value and reaction temperature, the reaction time has a minor effect on the morphology of Ag3PO4 particles. RhB was chosen as the target pollutant to evaluate the photocatalytic activity of the as-prepared Ag3PO4 samples under simulated-sunlight irradiation. It is shown that the samples consisting of spherical nanoparticles exhibit an extremely high photocatalytic activity, and the degradation percentage of RhB after reaction for 50 min reaches over 90%. The samples of polyhedral microparticles have a relatively low photocatalytic activity, which is possibly due to their large particle size. Hydroxyl (.OH) radical was detected by spectrofluorimetry using terephthalic acid as a .OH scavenger and was not found to be produced over the simulated-sunlight-irradiated Ag3PO4 catalyst. The effect of ethanol, benzoquinone and ammonium oxalate on dye degradation was also investigated. Based on experimental results, the direct oxidation by h+ is suggested to the dominant mechanism toward the dye degradation.


2011 ◽  
Vol 393-395 ◽  
pp. 1413-1416
Author(s):  
Yu Xiang Wang ◽  
Dan Dan Li ◽  
Xing Huang ◽  
Ya Juan Zhao

The selective hydrogenation of 4,4'-methylenedianiline(MDA) over Ru/γ-Al2O3 was investigated in the presence of diamine and base. Under the optimum conditions: the reaction temperature of 448K, H2 pressure of 1100 psig , and reaction time of 5h, the conversion of 4,4'-methylenedianiline was close to 100% and the selectivity to trans-trans isomer of 4,4'-diamino-dicyclohexy was less than 20%.


2011 ◽  
Vol 250-253 ◽  
pp. 881-889 ◽  
Author(s):  
Xian Feng Liu ◽  
Jia Hui Peng ◽  
Chen Yang Zou ◽  
Leng Bai ◽  
Mei Li

This paper studies the laws of crystal growth, percent conversion and the rate of reaction of α-calcium sulfate hemihydrate from FGD gypsum under different conditions using the hydrothermal method under atmospheric pressure. The crystal morphology was observed by using SEM, polarizing microscope profile, and percent conversion and the rate of reaction were obtained by assaying crystal water content and calculating. The results showed, (1) with the increase of reaction temperature, the dehydration rate increased and the formed α-calcium sulfate hemihydrate crystal had a larger particle size; (2) with the increase of salt concentration or slurry concentration, the formed α-calcium sulfate hemihydrate crystal was smaller, percent conversion and the rate of reaction was nearly unchanged; (3) with the increase of pH value of solution, the rate of reaction increased and percent conversion was nearly unchanged, and with pH value ranging from 5 to 7 the formed α-calcium sulfate hemihydrate crystal was crassitude. In conclusion, the perfect technological parameters were as follows: reaction temperature ranging from 95°C to 100°C, salt concentration ranging from 15% to 20%, slurry concentration ranging from 15% to 20%, pH value ranging from 5 to 7, and reaction time not exceeding 90min.


2011 ◽  
Vol 138-139 ◽  
pp. 929-932
Author(s):  
Wan Ping Fang ◽  
Li Pu Wang ◽  
Jun Yu ◽  
Peng Xiang Yue ◽  
Xin Jiang ◽  
...  

Green tea powder and polyphenol oxidase extracted from eggplant has been used to explore the optimum condition for theaflavins synthesis under single factor and orthogonal experimental design. The results showed that pH value had significant effect on theaflavins synthesis. The optimum reaction condition was, under the temperature of 25°C, the system pH value 4.5, substrates concentration 2.5 g/L, and 35 mL crude enzyme with 196 U, reaction time 40 min, then the total content of theaflavins reached to 7.45 mg.


2011 ◽  
Vol 236-238 ◽  
pp. 1135-1138
Author(s):  
Shi Min Chen ◽  
Hong Xiang Zhu ◽  
Nan Nan Xia ◽  
Shuang Fei Wang ◽  
Hai Nong Song

The Polyamide Polyamine Epichlorhydrin Resin was obtained by using adipic acid, diethylene triamine and epoxy chloropropane as raw materials. The factors that would affect the properties of PAE resin were considered, including the reaction time, the dosage of the epoxy chloropropane, the injection time of epoxy chloropropane and the soaking time, and the wet strengthening property of PAE resin were studied through experiments. The results are as following: the ratio of epoxy chloropropane to diethylenetriamine is 1:1, the injection time of epoxy chloropropane is 8.5 min, the reaction temperature is 75 °C and the soaking time is 35min~40min. Under the optimum conditions, the PAE has a higher wet-strength and solid content, and its viscosity up to 25~35cp.


Sign in / Sign up

Export Citation Format

Share Document