Modeling of Grain Growth with Second Phase Particle Pinning by Cellular Automata Method

2011 ◽  
Vol 239-242 ◽  
pp. 1474-1477
Author(s):  
Hong Zhong Li ◽  
Xiao Fei Ma

A model for grain growth simulation, in the presence of the second phase particles, is established with the help of a Cellular Automata method. The effect of the time when the second phase particles are introduced on grain growth is simulated. The simulation results show that the second phase particles inhibit the grain growth and the earlier the particles are introduced, the better the pinning effect.

2012 ◽  
Vol 510 ◽  
pp. 772-775
Author(s):  
Zong Lei Gu ◽  
Yu Liang Yin

Based on cellular automata, a model of simulating grain growth was established and the key technologies of simulation was studied which including second phase particle of single size, multi-size distribution and different shapes generation technologies. The simulation result can accurately reflect the influence law of the second phase particle grain growth and its pinning mechanism. Grain boundaries can therefore more easily break free from the particles than in purely two-dimensional systems, resulting in fewer grain boundaryparticle intersections and a larger final grain size. For a given volume fraction f and size of the particles r, the final grain size increases with film thickness. Moreover, it was found that particles located in the middle of the film are most efficient in pinning grain boundaries. The simulation results are compared with Zener type relations and previous simulation results.


2011 ◽  
Vol 189-193 ◽  
pp. 2200-2203
Author(s):  
Xiao Fei Ma

Based on cellular automata, a model of simulating grain growth is established to study the effects of the second phase particle’s size and volume fraction on grain growth. The simulation results show that the smaller is the volume fraction of second phase particle, the finer is the grain of pinned matrix, and the pinning force of bigger second phase particle is stronger than that of smaller one. The correlative laws obtained from the simulation is in accordance with the theoretical models.


2016 ◽  
Vol 850 ◽  
pp. 307-313
Author(s):  
Yan Wu ◽  
Si Xia ◽  
Bernie Ya Ping Zong

A phase field model has been established to simulate the grain growth of AZ31 magnesium alloy containing spherical particles with different sizes and contents under realistic spatial-temporal scales. The expression term of second phase particles are added into the local free energy density equation, and the simulated results show that the pinning effect of particles on the grain growth is increased when the contents of particles is increasing, which is consistent with the law of Zener pinning. There is a critical particle size to affect the grain growth in the microstructure. If the size of particles is higher than the critical value, the pinning effect of particles for grain growth will be increased with further decreasing the particle size; however the effect goes opposite if the particle size is lower than the critical value.


1999 ◽  
Vol 32 (1-4) ◽  
pp. 137-151 ◽  
Author(s):  
Y. Ushigami ◽  
T. Kubota ◽  
N. Takahashi

Selective growth of {110}〈001〉 grains in the temperature gradient annealing has been studied in Fe–3%Si alloy. As grains grow, the average deviation angle from the ideal {110}〈001〉 orientation becomes smaller and orientation distribution changes corresponding to that of coincidence grains in the matrix. Secondary recrystallization temperature depends on the orientation of secondary recrystallized grain and sharper {110} 〈001〉 grains grow preferentially at lower temperatures.These phenomena are explained by modified Hillert's model of grain growth. Interfacial energy of coincidence boundary is lower than that of general boundary. Therefore, sharper {110}〈001〉 grains, which have higher frequency of coincidence grains in the primary recrystallized matrix, suffer lower pinning effect from the second phase particles and thus grow preferentially at lower temperatures.


2011 ◽  
Vol 239-242 ◽  
pp. 930-933
Author(s):  
Xiao Fei Ma

Based on cellular automata, a model of simulating grain growth is established to study the effects of the second phase particle’s size distribution on grain growth. The simulation results show that the second phase particles in the matix pin the grain boundary and then inhibit the grain growth. Different size distributions of the second phase particles have different pinning effect on the grain boundary, and the relationship of average grain size for the material with the second phase particles is RLognormal>RUniform>RNormal. The correlative laws obtained from the simulation is in accordance with the theoretical models.


2013 ◽  
Vol 741 ◽  
pp. 3-6 ◽  
Author(s):  
Wen Quan Zhou ◽  
Ying Juna Gao ◽  
Yao Liu ◽  
Zhi Rong Luo ◽  
Chuang Gao Huang

The phase field method was applied to study the effect of second-phase particles (SPP) with different geometric orientations and shapes on grain growth. The results show that, in the grain growth process, most of the spherical second-phase particles located at triple junctions, while the stick SPPs located at the grain boundaries along the grain boundary. The second-phase particles are of the strong pinning effect on grain boundary and the limiting grain radius can be expressed by Zener relations. In the condition of the second-phase particles area fraction and size remaining the same, the stick SPPs are of more effective pinning on grain growth than that for spherical SPPs, and the orientation of disk second-phase particles is also an influence factor for pinning effect. Stick second-phase particles with multiple orientations can make a better pining effect than those with only one orientation.


Author(s):  
Fengbo Han ◽  
Bin Tang ◽  
Hongchao Kou ◽  
Jinshan Li ◽  
Yong Feng

Sign in / Sign up

Export Citation Format

Share Document