scholarly journals A review of discrete element simulation of ice–structure interaction

Author(s):  
Jukka Tuhkuri ◽  
Arttu Polojärvi

Sea ice loads on marine structures are caused by the failure process of ice against the structure. The failure process is affected by both the structure and the ice, thus is called ice–structure interaction. Many ice failure processes, including ice failure against inclined or vertical offshore structures, are composed of large numbers of discrete failure events which lead to the formation of piles of ice blocks. Such failure processes have been successfully studied by using the discrete element method (DEM). In addition, ice appears in nature often as discrete floes; either as single floes, ice floe fields or as parts of ridges. DEM has also been successfully applied to study the formation and deformation of these ice features, and the interactions of ships and structures with them. This paper gives a review of the use of DEM in studying ice–structure interaction, with emphasis on the lessons learned about the behaviour of sea ice as a discontinuous medium. This article is part of the theme issue ‘Modelling of sea-ice phenomena’.

Author(s):  
Dianshi Feng ◽  
Sze Dai Pang ◽  
Jin Zhang

The increasing marine activities in the Arctic has resulted in a growing demand for reliable structural designs in this region. Ice loads are a major concern to the designer of a marine structure in the arctic, and are often the principal factor that governs the structural design [Palmer and Croasdale, 2013]. With the rapid advancement in computational power, numerical method is becoming a useful tool for design of offshore structures subjected to ice actions. Cohesive element method (CEM), a method which has been widely utilized to simulate fracture in various materials ranging from metals to ceramics and composites as well as bi-material systems, has been recently applied to predict ice-structure interactions. Although it shows promising future for further applications, there are also some challenging issues like high mesh dependency, large variation in cohesive properties etc., yet to be resolved. In this study, a 3D finite element model with the use of CEM was developed in LS-DYNA for simulating ice-structure interaction. The stability of the model was investigated and a parameter sensitivity analysis was carried out for a better understanding of how each material parameter affects the simulation results.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Mohamed Aly ◽  
Rocky Taylor ◽  
Eleanor Bailey Dudley ◽  
Ian Turnbull

Ice flexural strength is an important parameter in the assessment of ice loads on the hulls of ice-class ships, sloped offshore structures, and sloped bridge piers. While scale effects in compressive ice strength are well known, there has been debate as to the extent of scale effects in ice flexural strength. To investigate scale effects during flexural failure of both freshwater and saline ice, a comprehensive up-to-date database of beam flexural strength measurements has been compiled. The database includes 2073 freshwater ice beam tests with beam volumes between 0.00016 and 2.197 m3, and 2843 sea ice beam tests with volumes between 0.00048 and 59.87 m3. The data show a considerable decrease in flexural strength as the specimen size increases, when examined over a large range of scales. Empirical models of freshwater ice flexural strength as a function of beam volume, and of saline ice as function of beam and brine volumes have been developed using regression analysis. For freshwater ice, the scale-dependent flexural strength is given as: σf=839(V/V1)−0.13 For sea ice, the dependence of flexural strength has been modeled as: σ=1324(V/V1)−0.054e−4.969vb. Probabilistic models based on the empirical data were developed based on an analysis of the residuals, and can be used to enhance probabilistic analysis of ice loads where ice flexural strength is an input.


Author(s):  
Rocky S. Taylor ◽  
Martin Richard

During an ice-structure interaction, the localization of contact into high pressure zones (hpzs) has important implications for the manner in which loads are transmitted to the structure. In a companion paper, new methods for extracting empirical descriptions of the attributes of individual hpzs from tactile sensor field data for thin first-year sea ice have been presented. In the present paper these new empirical hpz relationships have been incorporated into a probabilistic ice load model, which has been used to simulate ice loads during level ice interactions with a rigid structure. Additional aspects of the ice failure process, such as relationships between individual hpzs and the spatial-temporal distribution of hpzs during an interaction have also been explored. Preliminary results from the empirical hpz ice load model have been compared with existing empirical models and are discussed in the context of both local and global loads acting on offshore structures.


1991 ◽  
Vol 28 (5) ◽  
pp. 752-759
Author(s):  
R. W. Marcellus ◽  
D. N. Heuff

Brittle fracture of ice plays an extremely interesting and complex role in the ice failure process. This paper provides a general overview of the behavior and structure of ice on both the microscopic and macroscopic levels. The idea that the failure load on any type of ice is dependent on the load path that the ice experiences prior to failure is discussed. This paper also provides a general overview of the different fracture mechanisms that occur during ice failure and introduces a new concept for describing the crushing process. Key words: ice, fracture, brittle, failure, ice-structure interaction, ice strength, new crushing concept, microcrack, macrocrack.


1983 ◽  
Vol 4 ◽  
pp. 124-128 ◽  
Author(s):  
Jerome B. Johnson

Two methods are presented for calculating ice loads on structures using measurements from sensors imbedded in a floating ice sheet and from instruments attached to a structure. The first method uses a mathematical model describing ice/structure interaction for a cylindrical structure to interpret stress measurements. This technique requires only a few sensors to develop an estimate of ice loads, However, analytical and experimental results indicate that using a mathematical model to interpret stress measurements can result in inaccurate load estimates due to uncertainty in the accuracy of the model and and the uncertainty of using local ice stresses to calculate total ice forces. The second method of calculating ice loads on structures utilizes Euler and Cauchy’s stress principle. In this, the surface integral method, the force acting on a structure is determined by summing the stress vectors acting on a surface which encompasses the structure. Application of this technique requires that the shear and normal components of stress be known along the surface. Sensors must be spaced close enough together so that local stress variations due to the process of ice failure around a structure can be detected. The surface integral method is a useful technique for interpreting load and stress measurements since a knowledge of the mechanism of ice/structure interactions is not needed. The accuracy of the method is determined by the density of sensors along the surface. A disadvantage of the technique is that a relatively large number of sensors are needed to determine the stress tensor along the surface of interest.The surface integral method can be used to examine the effects of grounded ice rubble on structural ice loads. Two instrumented surfaces, one enclosing a structure and the other enclosing the structure and rubble field can be used to estimate the load acting only on the structure and also on the structure/ rubble-field system.


1987 ◽  
Vol 40 (9) ◽  
pp. 1232-1242 ◽  
Author(s):  
Devinder S. Sodhi ◽  
Gordon F. N. Cox

A brief review of significant advances in the field of sea ice mechanics in the United States is presented in this paper. Emphasis is on ice forces on structures, as the subject relates to development of oil and gas resources in the southern Beaufort Sea. The main topics discussed here are mechanical properties, ice–structure interaction, modeling of sea ice drift, and oil industry research activities. Significant advances in the determination of ice properties are the development of testing procedures to obtain consistent results. Using stiff testing machines, researchers have been able to identify the dependence of tensile and compressive strengths on different parameters, eg, strain rate, temperature, grain size, c-axis orientation, porosity, and state of stress (uniaxial or multiaxial). Now reliable data exist on the tensile and compressive strengths of first-year and multi-year sea ice. Compressive strengths obtained from field testing of large specimens (6 × 3 × 2 m thick) were found to be within 30% of the strengths obtained from small samples tested in laboratory at the same temperature and strain rate as found in the field. Recent advances in the development of constitutive relations and yield criteria have incorporated the concept of damage mechanics to include the effect of microfracturing during the ice failure process. Ice forces generated during an ice–structure interaction are related to ice thickness and properties by conducting analytical or small-scale experimental studies, or both. Field measurements of ice forces have been made to assess the validity of theoretical and small-scale experimental results. There is good agreement between theoretical and small-scale experimental results for ice forces on conical structures. Theoretical elastic buckling loads also agree with the results of small-scale experiments. Though considerable insight has been achieved for ice crushing failure, estimation of ice forces for this mode is based on empirical relations developed from small-scale experiments. A good understanding of the ice failure process has been achieved when ice fails in a single failure mode, but our understanding of multi-modal ice failure still remains poor. Field measurements of effective pressure indicate that it decreases with increasing contact area. Research in fracture mechanics and nonsimultaneous failure is underway to explain this observed trend. Ice ridge formation and pile-up have been modeled, and the forces associated with these processes are estimated to be low. The modeling of sea ice drift has progressed to a point where it is able to determine the extent, thickness distribution, and drift velocity field of sea ice over the entire arctic basin. Components of this model relate to momentum balance, thermodynamic processes, ice thickness distribution, ice strength, and ice rheology.


Author(s):  
Jan Thijssen ◽  
Mark Fuglem

Offshore structures designed for operation in regions where sea ice is present will include a sea ice load component in their environmental loading assessment. Typically ice loads of interest are for 10−2, 10−3 or 10−4 annual probability of exceedance (APE) levels, with appropriate factoring to the required safety level. The ISO 19906 standard recommends methods to determine global sea ice loads on vertical structures, where crushing is the predominant failure mode. Fitted coefficients are proposed for both Arctic and Sub-Arctic (e.g. Baltic) conditions. With the extreme ice thickness expected at the site of interest, an annual global sea ice load can be derived deterministically. Although the simplicity of the proposed relation provides quick design load estimates, it lacks accuracy because the only dependencies are structure width, ice thickness and provided coefficients; no consideration is given to site-specific sea ice conditions and the corresponding exposure. Additionally, no term is provided for including ice management in the design load basis. This paper presents a probabilistic methodology to modify the deterministic ISO 19906 relations for determining global and local first-year sea ice loads on vertical structures. The presented methodology is based on the same ice pressure data as presented in ISO 19906, but accounts better for the influence of ice exposure, ice management and site-specific sea ice data. This is especially beneficial for ice load analyses of seasonal operations where exposure to sea ice is limited, and only thinner ice is encountered. Sea ice chart data can provide site-specific model inputs such as ice thickness estimates and partial concentrations, from which corresponding global load exceedance curves are generated. Example scenarios show dependencies of design loads on season length, structural geometry and sea ice conditions. Example results are also provided, showing dependency of design loads on the number of operation days after freeze-up, providing useful information for extending the drilling season of MODUs after freeze-up occurs.


2011 ◽  
Vol 243-249 ◽  
pp. 4750-4753 ◽  
Author(s):  
Ji Wu Dong ◽  
Zhi Jun Li ◽  
Li Min Zhang ◽  
Guang Wei Li ◽  
Hong Wei Han

A structure was designed to reduce the large forces exerted by level ice on offshore structures in shallow icy waters, by breaking the large ice floes into small pieces from flexing-induced failure. A series of model tests was conducted to simulate ice loads on the structure. A concrete model of it was adopted to verify the stability of the structure under the action of ice floes, which had five different thicknesses. The results show that ice forces on the structure are low and that the stability of the structure under different sea bed is good.


Sign in / Sign up

Export Citation Format

Share Document