Ice Forces due to Changes in Water Level and Adfreeze Bond Strength Between Sea Ice and Various Materials

1988 ◽  
Vol 110 (1) ◽  
pp. 74-80 ◽  
Author(s):  
N. Nakazawa ◽  
H. Saeki ◽  
T. Ono ◽  
T. Takeuchi ◽  
S. Kanie

In cold regions, changes in water level can induce vertical forces on offshore structures (such as caisson and tower types) when sea ice cover to structure adfreeze bonding is present. This paper summarized the theoretical analyses of vertical ice forces as well as the results of experiments which identified the parameters required when estimating sea ice adfreeze bond strength. 1) Vertical Ice Forces. The authors have proposed a method of calculation that estimates the vertical ice forces taking the following into account: bending failure of the ice cover and adfreeze bond failure (shear induced). Calculation of vertical ice forces by this method requires the following information: bending strength of ice. Young’s modulus of ice, Poisson’s ratio of ice, and adfreeze bond strength to various materials. 2) Adfreeze Bond Strength of Sea Ice. The authors have been conducting, for 6 yr, adfreeze bond strength experiments between sea ice and various common construction materials for offshore structures such as concrete and steel. The following conclusions have been drawn from this study: (i) under certain conditions, the adfreeze bond strength of sea ice greatly depends on the surface roughness of construction materials; (ii) adfreeze bond strength increases with decreasing sea ice temperature; (iii) adfreeze bond strength decreases, approaching a constant, with increasing structure diameter; (iv) adfreeze bond strength increases, approaching a constant, with increasing ice thickness; (v) adfreeze bond strength is not greatly affected by push out velocity and stress rate.

2019 ◽  
Vol 7 (11) ◽  
pp. 417 ◽  
Author(s):  
Liu ◽  
Li ◽  
Zhang

With the development of large-scale offshore projects, sea ice is a potential threat to the safety of offshore structures. The main forms of damage to bottom-fixed offshore structures under sea ice are crushing failure and bending failure. Referred to as the concept of seismic response spectrums, the design response spectrum of offshore structures induced by the crushing and bending ice failure is presented. Selecting the Bohai Sea in China as an example, the sea areas were divided into different ice zones due to the different sea ice parameters. Based on the crushing and bending failure power spectral densities of ice force, a large amount of ice force time-history samples are firstly generated for each ice zone. The time-history of the maximum responses of a series of single degree of freedom systems with different natural frequencies under the ice force are calculated and subsequently, a response spectrum curve is obtained. Finally, by fitting all the response spectrum curves from different samples, the design response spectrum is generated for each ice zone. The ice force influence coefficients for crushing and bending failure are obtained, which can be used to estimate the stochastic sea ice force acting on a structure conveniently in a static way. A comparison of the proposed response spectrum method with the Monte Carlo method by a numerical example shows good agreement.


2011 ◽  
Vol 243-249 ◽  
pp. 4750-4753 ◽  
Author(s):  
Ji Wu Dong ◽  
Zhi Jun Li ◽  
Li Min Zhang ◽  
Guang Wei Li ◽  
Hong Wei Han

A structure was designed to reduce the large forces exerted by level ice on offshore structures in shallow icy waters, by breaking the large ice floes into small pieces from flexing-induced failure. A series of model tests was conducted to simulate ice loads on the structure. A concrete model of it was adopted to verify the stability of the structure under the action of ice floes, which had five different thicknesses. The results show that ice forces on the structure are low and that the stability of the structure under different sea bed is good.


1971 ◽  
Vol 8 (4) ◽  
pp. 514-526 ◽  
Author(s):  
E. Penner ◽  
L. W. Gold

The paper gives results of field studies on uplift forces on small-diameter columns of steel, concrete, and wood caused by adfreezing in frost-susceptible Leda clay. Adfreeze strength values would appear to be highest for steel and concrete, followed closely by wood. The heaving pattern and the heaving force transmitted are shown to be different for long foundation walls than for isolated columns. This compares favorably with the deformation pattern induced in an ice cover around offshore structures, during a change in water level. Attention is also given to the relative movement of the heaving soil with respect to the structure and the influence of the heave pattern on the transmission of forces.


1986 ◽  
Vol 108 (1) ◽  
pp. 65-71 ◽  
Author(s):  
H. Saeki ◽  
T. Ono ◽  
N. Nakazawa ◽  
M. Sakai ◽  
S. Tanaka

When structures having inclined surfaces, such as cone-type and inclined-pile structures, are constructed in coastal and offshore cold regions, sea ice forces must be considered in their design. In order to estimate these forces, the relationships of the coefficients of static and kinetic friction between sea ice and construction materials must be evaluated. The authors have been conducting, for four years, experiments on the coefficients of friction between sea ice and various commonly used offshore construction materials such as concrete and steel. This paper summarizes the results of this study. The coefficients of friction have been found to be affected by the following: (i) relative velocity (i.e., velocity of construction material relative to sea ice); (ii) sea ice temperature; and (iii) surface roughness of construction material. They have been found to be relatively unaffected by the following: (i) contact area, (ii) normal stress, (iii) growth direction of sea ice, and (iv) water at the sea ice-material interface.


1997 ◽  
Vol 43 (143) ◽  
pp. 138-151 ◽  
Author(s):  
M. O. Jeffries ◽  
K. Morris ◽  
W.F. Weeks ◽  
A. P. Worby

AbstractSixty-three ice cores were collected in the Bellingshausen and Amundsen Seas in August and September 1993 during a cruise of the R.V. Nathaniel B. Palmer. The structure and stable-isotopic composition (18O/16O) of the cores were investigated in order to understand the growth conditions and to identify the key growth processes, particularly the contribution of snow to sea-ice formation. The structure and isotopic composition of a set of 12 cores that was collected for the same purpose in the Bellingshausen Sea in March 1992 are reassessed. Frazil ice and congelation ice contribute 44% and 26%, respectively, to the composition of both the winter and summer ice-core sets, evidence that the relatively calm conditions that favour congelation-ice formation are neither as common nor as prolonged as the more turbulent conditions that favour frazil-ice growth and pancake-ice formation. Both frazil- and congelation-ice layers have an av erage thickness of 0.12 m in winter, evidence that congelation ice and pancake ice thicken primarily by dynamic processes. The thermodynamic development of the ice cover relies heavily on the formation of snow ice at the surface of floes after sea water has flooded the snow cover. Snow-ice layers have a mean thickness of 0.20 and 0.28 m in the winter and summer cores, respectively, and the contribution of snow ice to the winter (24%) and summer (16%) core sets exceeds most quantities that have been reported previously in other Antarctic pack-ice zones. The thickness and quantity of snow ice may be due to a combination of high snow-accumulation rates and snow loads, environmental conditions that favour a warm ice cover in which brine convection between the bottom and top of the ice introduces sea water to the snow/ice interface, and bottom melting losses being compensated by snow-ice formation. Layers of superimposed ice at the top of each of the summer cores make up 4.6% of the ice that was examined and they increase by a factor of 3 the quantity of snow entrained in the ice. The accumulation of superimposed ice is evidence that melting in the snow cover on Antarctic sea-ice floes ran reach an advanced stage and contribute a significant amount of snow to the total ice mass.


Author(s):  
Xiaoyi Shen ◽  
Chang-Qing Ke ◽  
Bin Cheng ◽  
Wentao Xia ◽  
Mengmeng Li ◽  
...  

AbstractIn August 2018, a remarkable polynya was observed off the north coast of Greenland, a perennial ice zone where thick sea ice cover persists. In order to investigate the formation process of this polynya, satellite observations, a coupled ice-ocean model, ocean profiling data, and atmosphere reanalysis data were applied. We found that the thinnest sea ice cover in August since 1978 (mean value of 1.1 m, compared to the average value of 2.8 m during 1978–2017) and the modest southerly wind caused by a positive North Atlantic Oscillation (mean value of 0.82, compared to the climatological value of −0.02) were responsible for the formation and maintenance of this polynya. The opening mechanism of this polynya differs from the one formed in February 2018 in the same area caused by persistent anomalously high wind. Sea ice drift patterns have become more responsive to the atmospheric forcing due to thinning of sea ice cover in this region.


Author(s):  
Qiang Zhang ◽  
Shibo Guo ◽  
Yan Sun ◽  
JianPing Dou ◽  
Xiao-Ming Li
Keyword(s):  
Sea Ice ◽  

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Mats Brockstedt Olsen Huserbråten ◽  
Elena Eriksen ◽  
Harald Gjøsæter ◽  
Frode Vikebø

Abstract The Arctic amplification of global warming is causing the Arctic-Atlantic ice edge to retreat at unprecedented rates. Here we show how variability and change in sea ice cover in the Barents Sea, the largest shelf sea of the Arctic, affect the population dynamics of a keystone species of the ice-associated food web, the polar cod (Boreogadus saida). The data-driven biophysical model of polar cod early life stages assembled here predicts a strong mechanistic link between survival and variation in ice cover and temperature, suggesting imminent recruitment collapse should the observed ice-reduction and heating continue. Backtracking of drifting eggs and larvae from observations also demonstrates a northward retreat of one of two clearly defined spawning assemblages, possibly in response to warming. With annual to decadal ice-predictions under development the mechanistic physical-biological links presented here represent a powerful tool for making long-term predictions for the propagation of polar cod stocks.


Sign in / Sign up

Export Citation Format

Share Document