The Study of BP Neural Network in Predicting Concrete Strength

2011 ◽  
Vol 243-249 ◽  
pp. 6169-6173
Author(s):  
Zhao Ming

Concrete is a mainly and commonly good combined construction material, and is consisted of many well-defined components, so mechanical properties of concrete are very complex. the compressive strength of the concrete is a main criterion in producing concrete, but the test on it is complicated because test components of concrete must be kept in the special condition an tested after 28 days. To simplify the procedures and obtain a reasonable data, the paper presents a method using the system of BP neural network predicting the strength of concrete. the system is trained and tested by using many data of strength of concrete in the past ,the test result shows that the value of the strength of concrete predicted is approximate to the experimental value, and the method presented is very efficient and reasonable in predicting the compressive strength of concrete .

2019 ◽  
Vol 9 (6) ◽  
pp. 1039 ◽  
Author(s):  
Guohua Liu ◽  
Jian Zheng

Green concrete has been widely used in recent years because its production compliments environmental conservation. The prediction of the compressive strength of concrete using non-destructive techniques is of interest to engineers worldwide. Such methods are easy to carry out because they require little or no sample preparation. Conventional models and artificial intelligence models are two main types of models to predict the compressive strength of concrete. Artificial intelligence models main include the artificial neural network (ANN) model, back propagation (BP) neural network model, fuzzy model etc. Since both conventional models and artificial intelligence models are flawed. This study proposes to build a concrete compressive strength development over time (CCSDOT) model by using conventional method combined with the artificial intelligence method. The CCSDOT model performed well in predicting and fitting the compressive strength development in green concrete containing cement, slag, fly ash, and limestone flour. It is concluded that the CCSDOT model is stable through the use of sensitivity analysis. To evaluate the precision of this model, the prediction results of the proposed model were compared to that of the model based on the BP neural network. The results verify that the recommended model enjoys better flexibility, capability, and accuracy in predicting the compressive strength development in concrete than the other models.


2011 ◽  
Vol 250-253 ◽  
pp. 17-21 ◽  
Author(s):  
Ji Shu Sun ◽  
Yuan Ming Dou ◽  
Bo Li ◽  
Zhao Xia Chen

Dynamic compressive tests of plain concrete specimens (C30 and C40) are carried out on MTS, with the uniaxial strain rate ranging from 10-5/s to 10-2/s. The impacts of strain rates on concrete strength are studied systematically. The mechanical properties of compressive strength, elastic modulus and compressive stress-strain curve of concrete under different stain rates are also analyzed. The experiental relationships between strain rate and compressive strength of concrete are established. It is found that the compressive strength of concrete increases with the strain rate increasing. Modulus is also showing a growth trend, but the growth rate varies greatly; and the stress-strain curve under dynamic loads is similar to the one under static loads. These research achievements can provide us with a more accurate grasp of concrete actual working conditions and provide some guidance to structural design of concrete. These are important to build the dynamic damage constitutive models, too.


2021 ◽  
Author(s):  
Zhiyong Tian ◽  
Yuxuan Yang ◽  
Hongtao Peng ◽  
Jiahui Huang ◽  
Yihua Zhou ◽  
...  

As the most widely used construction material, concrete has the characteristics of good compressive performance. The compressive strength of concrete is the most important performance index. However, the compressive strength of concrete measured is generally based on the standard curing period for 28 d. Its period for detection is long. Therefore, it is necessary to study a fast and effective detection method. This paper mainly introduces the experimental method of microwave curing concrete and the relationship between concrete strength values of curing specimens using microwave and standard methods. The experimental results show that concrete specimens exposed to accelerated curing condition under microwave irradiation can increase the strength quickly within a shorter time period depending upon the procedure used in this work. By analysing experimental data, a model of concrete strength at age of 28 d using microwave curing and standard curing methods is established, which can early estimate compressive strength of concrete and provide a quick method for measuring the strength in the field.


2015 ◽  
Vol 773-774 ◽  
pp. 949-953 ◽  
Author(s):  
Izni Syahrizal Ibrahim ◽  
Wan Amizah Wan Jusoh ◽  
Abdul Rahman Mohd Sam ◽  
Nur Ain Mustapa ◽  
Sk Muiz Sk Abdul Razak

This paper discusses the experimental results on the mechanical properties of hybrid fibre reinforced composite concrete (HyFRCC) containing different proportions of steel fibre (SF) and polypropylene fibre (PPF). The mechanical properties include compressive strength, tensile strength, and flexural strength. SF is known to enhance the flexural and tensile strengths, and at the same time is able to resist the formation of macro cracking. Meanwhile, PPF contributes to the tensile strain capacity and compressive strength, and also delay the formation of micro cracks. Hooked-end deformed type SF fibre with 60 mm length and fibrillated virgin type PPF fibre with 19 mm length are used in this study. Meanwhile, the concrete strength is maintained for grade C30. The percentage proportion of SF-PPF fibres are varied in the range of 100-0%, 75-25%, 50-50%, 25-75% and 0-100% of which the total fibre volume fraction (Vf) is fixed at 0.5%. The experimental results reveal that the percentage proportion of SF-PPF fibres with 75-25% produced the maximum performance of flexural strength, tensile strength and flexural toughness. Meanwhile, the percentage proportion of SF-PPF fibres with 100-0% contributes to the improvement of the compressive strength compared to that of plain concrete.


2019 ◽  
Vol 14 (2) ◽  
Author(s):  
Syifa Fauziah ◽  
Anisah Anisah ◽  
Sittati Musalamah

This research aims to determine the maximum compressive strength value of concrete speedcrete using naphthalene additive additive at each test age and compare with normal concrete 28 days. This research used cylindrical test object with diameter 15 cm and height 30 cm. Speedcrete concrete does not undergo the treatment process while the normal concrete test object through the treatment process. Testing compressive strength of concrete speedcrete using Crushing Test Machine tool. In this research the compressive strength was produced by using superplasticizer type naphthalene and compared with normal concrete without using additive. The target quality plan is fc '35 MPa with the use of additive dose of 1.7% of the weight of cement. The results of this research showed an increase in the value of compressive strength of concrete speedcrete with aadditive materials added naphthalene increased with increasing age of concrete. The results showed that the compressive strength of concrete speedcrete with naphthalene additive materials of 12 hours, 18 hours, 28 hours and 48 hours was 0.5 MPa, 17,81 MPa, 31,14 MPa and 45,77 MPa. Normal strength concrete strength with the addition of 20% water age 28 days that is equal to 54.76 MPa.


2019 ◽  
Vol 5 (5) ◽  
pp. 1007-1019 ◽  
Author(s):  
Babar Ali ◽  
Liaqat Ali Qureshi ◽  
Ali Raza ◽  
Muhammad Asad Nawaz ◽  
Safi Ur Rehman ◽  
...  

Despite plain cement concrete presenting inferior performance in tension and adverse environmental impacts, it is the most widely used construction material in the world. Consumption of fibers and recycled coarse aggregates (RCA) can add ductility and sustainability to concrete. In this research, two mix series (100%NCA, and 100%RCA) were prepared using four different dosages of GF (0%GF, 0.25%GF, 0.5%GF, and 0.75%GF by volume fraction).  Mechanical properties namely compressive strength, splitting tensile strength, and flexural strength of each concrete mixture was evaluated at the age of 28 days. The results of testing indicated that the addition of GF was very useful in enhancing the split tensile and flexural strength of both RCA and NCA concrete. Compressive strength was not highly sensitive to the addition of GF. The loss in strength that occurred due to the incorporation of RCA was reduced to a large extent upon the inclusion of GF. GF caused significant improvements in the split tensile and flexural strength of RCA concrete. Optimum dosage of GF was determined to be 0.25% for NCA, and 0.5% for RCA concrete respectively, based on the results of combined mechanical performance (MP).


2015 ◽  
Vol 754-755 ◽  
pp. 348-353 ◽  
Author(s):  
Norlia Mohamad Ibrahim ◽  
Leong Qi Wen ◽  
Mustaqqim Abdul Rahim ◽  
Khairul Nizar Ismail ◽  
Roshazita Che Amat ◽  
...  

Compressive strength of concrete is the major mechanical properties of concrete that need to be focused on. Poor compressive strength will lead to low susceptibility of concrete structure towards designated actions. Many researches have been conducted to enhance the compressive strength of concrete by incorporating new materials in the concrete mixture. The dependencies towards natural resources can be reduced. Therefore, this paper presents the results of an experimental study concerning the incorporation of artificial lightweight bubbles aggregate (LBA) into cementations mixture in order to produce comparable compressive strength but at a lower densities. Three concrete mixtures containing various percentages of LBA, (10% - 50% of LBA) and one mixture used normal aggregate (NA) were prepared and characterized. The compressive strength of LBA in concrete was identified to be ranged between 39 MPa and 54 MPa. Meanwhile, the densities vary between 2000 kg/m3 to 2300 kg/m3.


2020 ◽  
Vol 322 ◽  
pp. 01039
Author(s):  
Lais Alves ◽  
Nordine Leklou ◽  
Silvio de Barros

Concrete is a major construction material that produces high levels of carbon dioxide in its manufacturing process. Hence the construction sector is responsible for relevant environmental impacts. This justifies the need to find materials as green and ecological alternatives to common Portland cement. Geopolymers represent the most promising alternative due to its proven durability, mechanical and thermal properties. This study investigates the effects of solid-to-liquid and alkali activator ratios on the synthesis of slag-based pure geopolymer and their relation to the geopolymerization process. Two activating solutions were used: a) a mixture of sodium hydroxide, sodium silicate, and water; and b) a mixture of potassium hydroxide solution, potassium silicate, and water. As precursor material, ground blast furnace slag was used. Precursors and activators were mixed with solid-to-liquid ratios in range of 1.5 to 2.2. In the first stage of the study, the mechanical properties were evaluated for each activating solution. In the following stage, different formulations, with variations in the water percentage and solid-to-liquid ratio were tested for mechanical properties and SEM observations. Test results indicate that the resulting geopolymer has the potential for high compressive strength and is directly affected by the composition of the activating solution. It can also be observed that compressive strength was affected by solid-to-liquid ratio and % of water added to the mixture, and strength increased with ageing day.


Sign in / Sign up

Export Citation Format

Share Document