Analysis of the Effect of Stopping Dewatering on Group Piles Foundation

2011 ◽  
Vol 250-253 ◽  
pp. 1348-1355
Author(s):  
Jun Fa Zhang ◽  
Lei Tao ◽  
Jian Jun Wen ◽  
Wen Xiang Liu

After the construction of building foundation with high groundwater table was finished, stopping dewatering of pit could create some effect on the force of foundation. In this paper, equivalent temperature-changed method was brought forward to simulate the influence of stopping dewatering which could conveniently use current structural analysis program to simulate the change of pore water pressure in soil. And based on ANSYS program, this method was applied in the project of Telecom Network Management Center in Shaanxi Province. Numerical results indicate that the effect of stopping dewatering on pile-raft system is significant, and some ‘abnormal phenomenon’ in In-Situ Testing is reasonably explained.

2012 ◽  
Vol 193-194 ◽  
pp. 1010-1013
Author(s):  
Shu Qing Zhao

The construct to precast pile in thick clayey soil can cause the accumulation of excess pore water pressure. The high excess pore pressure can make soil, buildings and pipes surrounded have large deflection, even make them injured. Combining with actual projects, this paper presents an in-situ model test on the changes of excess pore water pressure caused by precast pile construct. It is found that the radius of influence range for single pile driven is about 15m,the excess pore water pressure can reach or even exceed the above effective soil pressure, and there are two relatively stable stages.


Author(s):  
Yannick Wileveau ◽  
Kun Su ◽  
Mehdi Ghoreychi

A heating experiment named TER is being conducted with the objectives to identify the thermal properties, as well as to enhance the knowledge on THM processes in the Callovo-Oxfordian clay at the Meuse/Haute Marne Underground Research Laboratory (France). The in situ experiment has being switched on from early 2006. The heater, 3 m length, is designed to inject the power in the undisturbed zone at 6 m from the gallery wall. A heater packer is inflated in a metallic tubing. During the experiment, numerous sensors are emplaced in the surrounding rock and are experienced to monitor the evolution in temperature, pore-water pressure and deformation. The models and numerical codes applied should be validated by comparing the modeling results with the measurements. In parallel, some lab testing have been achieved in order to compare the results given with two different scales (cm up to meter scale). In this paper, we present a general description of the TER experiment with installation of the heater equipment and the surrounding instrumentation. Details of the in situ measurements of temperature, pore-pressure and strain evolutions are given for the several heating and cooling phases. The thermal conductivity and some predominant parameters in THM processes (as linear thermal expansion coefficient and permeability) will be discussed.


2013 ◽  
Vol 368-370 ◽  
pp. 1674-1677
Author(s):  
Yong Hua Cao ◽  
Xiao Qiang Kou

In urban environment, the soil disturbance induced by shield tunneling can be sensitive because it can cause deformation of the ground and damage the near structure. To study this disturbance in the construction process of Tianjin metro line No.3, in-situ monitoring of pore water pressure, soil pressure and ground settlement were conducted. The pore water pressure was monitored for the soil around the tunnel. The soil pressure was monitored for the soil around the tunnel and on the tunnel face. It was revealed that the pore water pressure and soil pressure changed twice in the tunneling process and these changes were induced by cutting face and grouting at the shield tail. The soil pressure on the tunnel face reached its maximal value when the distance between the cutting face and the sensor elements was around the diameter of the tunnel. Ground settlement developed in the tunneling process. The shape of ultimate settlement trough is closed to the one obtained by Pecks method.


2006 ◽  
Vol 52 (177) ◽  
pp. 175-182 ◽  
Author(s):  
Martin Truffer ◽  
William D. Harrison

AbstractA newly developed hammer was used to insert two autonomous probes 0.8 m and 2.1 m into clast-rich subglacial till under Black Rapids Glacier, Alaska, USA. Both probes were instrumented with a dual-axis tilt sensor and a pore-water pressure transducer. The data are compared to a 75 day record of surface velocities. Till deformation at depth was found to be highly seasonal: it is significant during an early-season speed-up event, but during long periods thereafter measured till deformation rates are negligible. Both tilt records show rotation around the probe axis, which indicates a change in tilt direction of about 30°. The tilt records are very similar, suggesting spatial homogeneity on the scale of the probe separation (4 m horizontal and 3.3 m vertical). There is evidence that during much of the year sliding of ice over till or deformation of a thin till layer (<20 cm) accounts for at least two-thirds of total basal motion. Basal motion accounts for 50–70% of the total surface motion. The inferred amount of ice–till sliding is larger than that found at the same location in a previous study, when surface velocities were about 10% lower. We suggest that variations in ice–till coupling account for the observed variations in mean annual speed.


2011 ◽  
Vol 243-249 ◽  
pp. 2752-2758
Author(s):  
Quan Cao ◽  
Hong Chen

The self-boring pressuremeter test has potential advantages over the conventional in situ method in the geotechnical investigation. It not only provides fundamental soil properties for the designer, but also plays more important role in the geotechnical analysis. With help of Cambridge self-boring model pressuremeter tests, some new application are studied in this paper as following: (1) Analysis of stress paths in clays adjacent to the cavity wall during self-boring pressuremeter test; (2) Experimental investigation on stiffness of soils at small strain under non-linear analysis; and (3) Study on magnitude of the changes in pore-water pressure of clays, which will help to enlarge the application of self-boring pressuremeter test in geotechnical engineering.


2021 ◽  
Author(s):  
Guodong Liu ◽  
Shiqiang Xu ◽  
Zhijun Zhou ◽  
Tao Li

Abstract Failures of treated slope occurring in China are at a consistently increasing rate, leaving the huge number of treated loess slopes calling for post-evaluation, however, no mature technique is in place. Depended on an loess slope in Shaanxi province treated by slope-cutting, indoor geotechnical and model tests were conducted, revealing the rainwater infiltration characteristics and pressure varying characteristics inside the slope, the results of which were then adopted to perform the post-evaluation of the treated slope. The results showed that the rainwater scouring effect on the loess slope surface attenuates gradually, and enters a steady stage after the first year of rainfall. The rainwater preferentially penetrates the platforms with gradually attenuating rates, however the wetting front can not be deemed as the boundary between the saturated and unsaturated areas, as the most parts of the model slope were indicated unsaturated by the pore water pressure sensors. Caused by the in-situ stress release, the soil pressures don’t increase but decrease sharply at the start of the rainfall. The displacements mainly occurs in the first two years of rainfall, following by steady periods. The model test results and investigation results were then used to conduct the post-evaluation of the prototype slope, which formed a post-evaluation frame relevant to other slope post-evaluations.


2018 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Hamed Sadeghi ◽  
Abraham C.F. Chiu ◽  
Charles W.W. Ng ◽  
Fardin Jafarzadeh

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Quan Zhang ◽  
Jiong Wang ◽  
Longfei Feng

When the deep tunnel is excavated, the pressure of the confined water is relatively high, causing the water inrush to have a hydraulic fracturing effect. The method of theoretical analysis was adopted to study this effect. A mechanical model for fracturing water inrush under blasting excavation conditions was established. The water inrush under this condition is the result of the combined action of static load (water pressure and in situ stress) and dynamic load (explosive stress wave). According to whether the normal stress on the hydraulic crack surface was tensile stress or compressive stress, two types of water inrush were proposed: water inrush caused by tensile-shear damage and water inrush caused by compression-shear damage. These two types of critical water pressures were calculated separately. The relationship between critical water pressure, in situ stress, and blasting disturbance load was given, and a pore water pressure splitting factor was introduced in the calculation process. The theoretically obtained critical water pressure had been verified in the case of water inrush in a deep-buried tunnel. The established theory can guide field practice well.


Sign in / Sign up

Export Citation Format

Share Document