Optimization Design of High-Performance Concrete Based on Genetic Algorithm Toolbox of Matlab

2011 ◽  
Vol 250-253 ◽  
pp. 2672-2677 ◽  
Author(s):  
Xian Song Xie ◽  
Dong Jin Yan ◽  
Yue Zhai Zheng

Genetic algorithm is a non-numerical optimization method which based on natural selection and population genetics.Using genetic algorithm to optimize the mix proportion design of high performance concrete, it takes into account the economic profitability on the foundation of satisfying the requirements of durability, strength, workability and dimensional stability of concrete, it establishes a mathematic model applying the performance of material as constraint condition, and the economic cost as optimization target.Using binary coding to represent the chromosome bit serial of individual, through selection, crossover, mutation and other genetic operator to conduct global probability search, taking the principle of “survival of the fittest”, finally achieve the best population and individual. Compare the results of optimization with the mix proportion in practice engineering case, we can reach the conclusion that Genetic Algorithm could reduce the cost, save energy, provides better use value on engineering practice.

2006 ◽  
Vol 302-303 ◽  
pp. 26-34
Author(s):  
Feng Xing ◽  
Xiang Yong Guo ◽  
Fa Guang Leng ◽  
Ren Yu Zhang

In this paper, the main characteristic of definition, property, requirement of raw material, mix proportion design and performance improvement of high volume fly ash concrete (for short HVFAC) are summarized. The applications of HVFAC in dam, highway, building and port are introduced. The research results have shown that HVFAC have outstanding properties of physical mechanics, but some problems need to be further studied. It is believed that an operable strict corresponding technical criterion would be set down as soon as possible for engineering practice.


2013 ◽  
Vol 639-640 ◽  
pp. 364-367 ◽  
Author(s):  
Xiao Bo Chen ◽  
Jian Yin ◽  
Wei Min Song

Based on engineering practice, autogenous volume deformation and creep properties of C60 high performance concrete(C60 HPC) and C60 high strength concrete(C60 HSC) were evaluated in the study. The results showed that the cement partly-replaced with fly ash could significantly decrease the creep deformation, creep coefficient and creep degree. In comparison with C60 HSC, the creep coefficient and creep degree of C60 HPC were decreased 17.9%and15.8% in 28 days, 22.9% and 21.0% in 270 days. For C60 HPC and C60 HSC at the same age, autogenous volume deformation of C60 HPC is greater than that of C60 HSC, but they were both less than 80×10-6 , and the autogenous volume deformation was basically completed in 7 days.


2010 ◽  
Vol 163-167 ◽  
pp. 2365-2368 ◽  
Author(s):  
Shu Ling Qiao ◽  
Zhi Jun Han

In this paper, determinate beam and indeterminate beam with multiple span are optimized by using genetic algorithm, the mathematic model of optimize beam is built and the processing method of constraint conditions is given. The examples show that the algorithm could be used for optimizing determinate structure, and also optimizing indeterminate structure. Compared to the linear approximation method, genetic algorithm has advantages of being simple, easy, fast convergence and has no use for changing the objective function and constraint conditions to linearity or other processing. Its results agree with linear approximation method’s. It is the other method that can be adopt in engineering field.


Author(s):  
Ke Zhang

A hybrid five bar mechanism is a typical planar parallel robot. It is a configuration that combines the motions of two characteristically different motors by means of a five bar mechanism to produce programmable output. Hybrid five bar mechanism is the most representative one of hybrid mechanism. In this paper, considering the bond graph can provide a compact and versatile representation for kinematics and dynamics of hybrid mechanism, the dynamics analysis for a hybrid five-bar mechanism based on power bond graph theory is introduced. Then an optimization design of hybrid mechanism is performed with reference to dynamic objective function. By the use of the properties of global search of genetic algorithm (GA), an improved GA algorithm is proposed based on real-code. Optimum dimensions are obtained assuming there are no dimensional tolerances or clearances. Finally, a numerical example is carried out, and the simulation result shows that the optimization method is feasible and satisfactory in the design of hybrid mechanism.


2012 ◽  
Vol 174-177 ◽  
pp. 1067-1071 ◽  
Author(s):  
Jon Bi ◽  
Binsar Hariandja ◽  
Iswandi Imran ◽  
Ivindra Pane

Keywords: High Performance Concrete, mix proportions, compressive strength , and durability Abstract. The use of concrete materials to date, remain a key ingredient in such construction work on the construction of building, bridges and infrastructure. One indicator is the increased production of readymix concrete which is nearly 16 billion tons in 2010. But the increased used of concrete, apparently bring the impact of environmental damage. This is due to the fact that production of raw materials contributes greatly to CO2 in the air. One effort to reduce such impact is to use of high performance concretes. Mix proportion of High Performance Concrete are strongly determined by the quality and availablity of local materials. The implications of research result from other countries can‘t be directly used. Therefore is need to the research on development of High Performance Concrete mix using locally available materials. In this research the mix proportions for f’c : 60 and 80 MPa are developed using local materials that are commonly used by readymix producers. The high Performance Concrete is developed based on compressive strength and durability. The result is expected to be applied to readymix industry particularly for construction use in Indonesia.


2009 ◽  
Vol 405-406 ◽  
pp. 44-49
Author(s):  
Feng Xing ◽  
Zhan Huang ◽  
Bi Qin Dong ◽  
Hui Yin ◽  
Jun Liu ◽  
...  

The paper discussed the mix principle, performance target and the technical demands for the underground high performance concrete combined the Shenzhen side-connection item of Shenzhen-Hong Kong West Channel project. The better mix proportion of underground high performance concrete is brought forward, which can direct the construct units and the concrete servers to produce the high quality concrete that fit for the underground project.


2013 ◽  
Vol 405-408 ◽  
pp. 2865-2870 ◽  
Author(s):  
Peng Gao ◽  
Hong Fa Yu

4 kinds of mix proportion High performance concrete (HPC) was manufactured, whose material was produced from Inner Mongolia areas. The compressive strength and the flexural strength of HPC were obtained by the Brine Corrosion experiments. And the resistance to corrosion of HPC was analyzed by the data of Brine Corrosion experiment. Furthermore, the concrete standard curing age of HPC samples was adopted as 28d and 90d, which could impact the resistance of high performance concrete in salt brine corrosion environment. It was turned out that 4 kinds of mix proportion HPC produced a good resistance in salt brine corrosion environment. And the longer the concrete standard curing age was adopted, the better resistance in salt brine corrosion environment of HPC could produce.


2014 ◽  
Vol 889-890 ◽  
pp. 107-112
Author(s):  
Ji Ming Tian ◽  
Xin Tan

The design of the gearbox must ensure the simplest structure and the lightest weight under the premise of meeting the reliability and life expectancy. According to the requirement of wind turbine, an improved method combined dynamic penalty function with pseudo-parallel genetic algorithm is used to optimize gearbox. It takes the minimum volumes as object functions. It is showed that the ability to search the global optimal solution of improved genetic algorithm and less number of iterations. The global optimal solution is worked out quickly. The size parameters are optimized, as much as the driving stability and efficiency. To verify the feasibility of improved genetic algorithm, ring gear of the gearbox is analyzed. Static strength analysis shows that the optimization method is reasonable and effective.


2009 ◽  
Vol 405-406 ◽  
pp. 1-4 ◽  
Author(s):  
Hao Wen Ye

This paper introduces development and application of ultra-high strength/high performance concrete in construction of the Xita tower high-rise building at Zhujiang New City of Guangzhou, China. The goal of the concrete construction in the Xita Tower project will be realized via research of mix proportion and optimization of pumping equipment. In regard to mix proportion of concrete, low water/cement (W/C) ratio, low water content lower than 150 kg/m3 and employment of superplasticizer are essential to acquire high strength. A series of parameters have been measured to research workability of concrete from C70 to C90, such slump, slump flow, flow time from inverted cone, L-box flow, and bleeding under pressure et al. Properties of hardened concrete should also be considered, including durability, autogenous shrinkage caused cracking, and fire resistance.


Sign in / Sign up

Export Citation Format

Share Document