Tensile Creep Behavior of HPC at Early Ages under Different Curing Temperatures

2011 ◽  
Vol 250-253 ◽  
pp. 434-439 ◽  
Author(s):  
Yang Yang ◽  
Peng Li ◽  
Yan Ping Wu

This paper presents an experimental investigation on tensile basic creep behavior of HPC at early ages by using a uniaxial tensile creep testing apparatus. Concrete specimens of 100×100×400mm with compressive strength class 60MPa was used, sealed and loaded at different curing temperature. The effects of the curing temperature and the age at loading on creep behavior are discussed. The results show that tensile specific creep and creep rate of HPC at early ages were governed by the age at loading. The specific creep, creep coefficient and creep rate were larger at earlier loading ages, and decreased exponentially with age at loading. The tensile specific creep decreased with curing temperature, but the difference in creep due to different curing temperatures decreased with the age at loading, and could be ignored while concrete specimen being loaded after the age of 7 days.

Author(s):  
Do-Jun Shim ◽  
Prabhat Krishnaswamy ◽  
Yunior Hioe ◽  
Sureshkumar Kalyanam

The U.S. Nuclear Regulatory Commission (USNRC) has recently approved Relief Requests for the use of high density polyethylene (HDPE) piping in safety-related applications. The ASME Boiler and Pressure Vessel Code, meanwhile, has developed Code Case N-755 that defines the design and service life requirements for PE piping in nuclear plants though it has not as yet been approved by the USNRC. One of the issues of concern is premature failure of PE piping due to slow crack growth (SCG) that can initiate due to a combination of sustained loads, elevated temperatures, and a pre-existing defect. Understanding and predicting the SCG behavior is an essential step in developing a methodology for predicting the service life of PE piping. The first step in studying the failure process in a polymer under a constant sustained load is the selection of a suitable constitutive model to represent the time-dependent behavior of the material. In this paper, uniaxial tensile creep tests were performed for a bimodal HDPE (PE4710) piping material. This creep data was used to determine the viscoelastic material constants for this bimodal HDPE using a power-law creep model. These material constants were used in finite element (FE) analyses to study the viscoelastic behavior of the bimodal HDPE. As a first step, the FE model was verified by comparing the results from numerical simulations and experiments for a set of uniaxial tensile creep tests. The FE model was then applied to study the viscoelastic behavior of a SCG specimen. The time dependent stress and strain fields were investigated.


2001 ◽  
Vol 16 (8) ◽  
pp. 2182-2185 ◽  
Author(s):  
Naoki Kondo ◽  
Yoshikazu Suzuki ◽  
Manuel E. Brito ◽  
Tatsuki Ohji

Tensile creep behavior of silicon nitride with aligned rodlike grains (anisotropic silicon nitride), fabricated by superplastic forging, was investigated at elevated temperatures. Creep rate of the anisotropic silicon nitride was about 1 order of magnitude lower than that of the isotropic one (without forging). The stress sensitivities for the isotropic and anisotropic specimens at 1200 °C were 2.1 and 2.6, respectively, and that for the anisotropic specimen at 1250 °C was 3.6. The grain alignment should cause a remarkable improvement in the creep resistance when a tensile stress is applied along the alignment direction.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6188
Author(s):  
Qiang Mao ◽  
Buyun Su ◽  
Ruiqiang Ma ◽  
Zhiqiang Li

Temperatures of −25 °C, +5 °C, and +35 °C were selected to study the creep behavior of high-density polyethylene (HDPE). The ultimate tensile strength of HDPE materials was obtained through uniaxial tensile experiments and the time–strain curves were obtained through creep experiments. When the loaded stress levels were lower than 60% of the ultimate strength, the specimens could maintain a longer time in the stable creep stage and were not prone to necking. In contrast, the specimens necked in a short time. Then, the time hardening form model was applied to simulate the time–strain curve and the parameter values were solved. The parameter values changed exponentially with the stresses, thereby expanding and transforming the time hardening model. The expanded model can easily and accurately predict creep behaviors of the initial and stable creep stages as well as the long-term deformations of HDPE materials. This study would provide a theoretical basis and reference value for engineering applications of HDPE.


Sign in / Sign up

Export Citation Format

Share Document