Improved creep resistance in anisotropic silicon nitride

2001 ◽  
Vol 16 (8) ◽  
pp. 2182-2185 ◽  
Author(s):  
Naoki Kondo ◽  
Yoshikazu Suzuki ◽  
Manuel E. Brito ◽  
Tatsuki Ohji

Tensile creep behavior of silicon nitride with aligned rodlike grains (anisotropic silicon nitride), fabricated by superplastic forging, was investigated at elevated temperatures. Creep rate of the anisotropic silicon nitride was about 1 order of magnitude lower than that of the isotropic one (without forging). The stress sensitivities for the isotropic and anisotropic specimens at 1200 °C were 2.1 and 2.6, respectively, and that for the anisotropic specimen at 1250 °C was 3.6. The grain alignment should cause a remarkable improvement in the creep resistance when a tensile stress is applied along the alignment direction.

2005 ◽  
Vol 488-489 ◽  
pp. 749-752 ◽  
Author(s):  
Su Gui Tian ◽  
Keun Yong Sohn ◽  
Hyun Gap Cho ◽  
Kyung Hyun Kim

Creep behavior of AM50-0.4% Sb-0.9%Gd alloy has been studied at temperatures ranging from 150 to 200°C and at stresses ranging from 40 to 90 MPa. Results show that the creep rate of AM50-0.4%Sb-0.9%Gd alloy was mainly controlled by dislocation climb at low stresses under 50 MPa. The activation energy for the creep was 131.2 ± 10 kJ/mol and the stress exponent was in the range from 4 to 9 depending on the applied stress. More than one deformation-mechanism were involved during the creep of this alloy. Microstructures of the alloy consist of a–Mg matrix and fine particles, distinguished as Mg17Al12, Sb2Mg3, and Mg2Gd or Al7GdMn5 that were homogeneously distributed in the matrix of the alloy, which effectively reduced the movement of dislocations, enhancing the creep resistance. Many dislocations were identified to be present on non-basal planes after creep deformation.


2016 ◽  
Vol 879 ◽  
pp. 2204-2209 ◽  
Author(s):  
Zhi Qing Yang ◽  
Wei Wei Hu ◽  
Heng Qiang Ye

Mg-Zn-Y alloys with long-period stacking ordered (LPSO) phases have superior strength at elevated temperatures. We studied plastic deformation and creep behavior of a Mg97Zn1Y2 (at.%) alloy. Deformation kinking of the LPSO phase plays an important role in strengthening the alloy during compression at elevated temperatures. Growth stacking faults with Zn/Y segregation can act as obstacles to non-basal slip and deformation twinning in Mg matrix. The tensile creep strain was only about 0.01% under a tensile stress of 70MPa for 100h at 200 °C, demonstrating excellent creep resistance of this alloy. Generation and motion of basal dislocations led to bending of LPSO phase during tensile creep of the Mg97Zn1Y2 (at.%) alloy. Plastic deformation in Mg grains was mostly achieved through basal slip during creep at temperatures below 200 °C, while non-basal slip through the generation and motion of “a + c” dislocations was activated with increasing the temperature to 200 °C and above. Dissociation of dislocations and Suzuki segregation on basal planes occurred widely in Mg matrix, which hindered dislocation motion and thus played an important role in preventing Mg grains from softening during deformation at elevated temperatures. In addition, Cottrell atmospheres were observed along dislocations in plastically deformed LPSO phase, impeding motion of dislocations. The superior strength and creep resistance of the Mg97Zn1Y2 (at.%) alloy at elevated temperatures are thus associated with the LPSO phase, stacking faults in Mg grains, formation of Cottrell atmospheres in LPSO and occurrence of Suzuki segregation in Mg.


2011 ◽  
Vol 189-193 ◽  
pp. 1386-1392
Author(s):  
Yan Lou ◽  
Luo Xing Li

Microstructures and creep properties of AM80 alloy with calcium and strontium additions have been investigated by using OM, X-ray diffraction, SEM and creep tests. The results indicate that the as-cast microstructure of the AM80 alloy consists of the α-Mg matrix, bones-shaped Mg17Al12 and lamellar second precipitation phase at grain boundaries. Calcium and strontium can refine the grain size and the secondary phases. Calcium addition results in the formation of a fishbone Al2Ca eutectic phase in AM80 alloy. With the increase of calcium, reticular Al2Ca phase distribute at the grain boundaries. The creep resistance of the AM80 alloy is significantly improved by a small amount of strontium and calcium addition due to the formation of a grain boundary network consisting of the high melting point Al2Ca phase. Microstructure observations performed on the sample after creep testing reveal that the phase is distorted during creep, reflecting its formation in the as-cast microstructure is unbeneficial to creep properties of the AM80 alloy. The creep resistance of the alloy at elevated temperatures was remarkably increased when calcium was added combined with strontium. The highest creep resistance was obtained from the alloy with xSr and y3Ca addition and its steady state creep rate reached as low as 3.941×10-8s-1, one order of magnitude lower than that of alloy AM80 without strontium and calcium additions.


2010 ◽  
Vol 436 ◽  
pp. 195-203 ◽  
Author(s):  
Wei Chen ◽  
Carl J. Boehlert

This work investigated the microstructure and elevated-temperature (400-475oC) tensile and tensile-creep deformation behavior of a powder metallurgy (PM) rolled Ti-6Al-4V-1B(wt.%) alloy. The PM rolled Ti-6Al-4V-1B alloy exhibited a duplex microstructure, and it did not exhibit a strong α-phase texture compared with the PM extruded Ti-6Al-4V-1B alloy. The PM rolled Ti-6Al-4V-1B alloy exhibited greater creep resistance than the PM extruded Ti-6Al-4V-1B alloy as well as the as-cast Ti-6Al-4V-1B alloy.


2011 ◽  
Vol 250-253 ◽  
pp. 434-439 ◽  
Author(s):  
Yang Yang ◽  
Peng Li ◽  
Yan Ping Wu

This paper presents an experimental investigation on tensile basic creep behavior of HPC at early ages by using a uniaxial tensile creep testing apparatus. Concrete specimens of 100×100×400mm with compressive strength class 60MPa was used, sealed and loaded at different curing temperature. The effects of the curing temperature and the age at loading on creep behavior are discussed. The results show that tensile specific creep and creep rate of HPC at early ages were governed by the age at loading. The specific creep, creep coefficient and creep rate were larger at earlier loading ages, and decreased exponentially with age at loading. The tensile specific creep decreased with curing temperature, but the difference in creep due to different curing temperatures decreased with the age at loading, and could be ignored while concrete specimen being loaded after the age of 7 days.


Author(s):  
David A. Woodford ◽  
Andrew A. Wereszczak ◽  
Wate T. Bakker

A new approach to tensile creep testing and analysis based on stress relaxation is described for sintered silicon nitride. Creep rate data covering up to five orders of magnitude were generated in tests lasting less than one day. Tests from various initial stresses at temperatures from 1250C to 1350C were analyzed and compared with creep rates measured during conventional constant load testing. It was shown that at least 40% of the creep strain accumulated under all test conditions was recoverable, and that the deformation could properly be described as viscoelastic/plastic. Tests were conducted to establish the level of repeatability and the effects of various thermomechanical histories. It was shown that none of the prior exposures led to significant impairment in creep strength. The results were used for three different grades to establish the value of the accelerated test to compare creep strengths for acceptance and for optimization. Several useful correlations were obtained between stress and creep rate. The systematic creep rate dependence as a function of loading strain prior to relaxation provided a possible basis for design in terms of a secant modulus analysis.


Author(s):  
Hiro Yoshida ◽  
M. Munawar Chaudhri ◽  
Takero Fukudome ◽  
Sazo Tsuruzono

A series of particle impact tests was carried out at elevated temperatures up to 1400°C and under tensile stresses up to 200 MPa using a gas turbine-grade silicon nitride (SN282-Kyocera Corporation). It was found that: 1) At room temperature, 100 MPa tensile stress brings 8% strength degradation. 2) Regarding the effect of the temperature without applying tensile stress, similar to the case of quasi-static loading, the fracture toughness seems to play a predominant role under the dynamic loading also. 3) At 1350°C under 100 MPa tensile stress, effect of the stress on the degradation increases by 15%. 4) The effects of temperature and tensile stress on the strength degradation seem to be additive for temperatures up to 1350°C. Above 1350°C, remarkable strength degradation appears.


Sign in / Sign up

Export Citation Format

Share Document