Prediction of Surface Roughness in High Speed Machining of Inconel 718

2011 ◽  
Vol 264-265 ◽  
pp. 1193-1198
Author(s):  
Mokhtar Suhaily ◽  
A.K.M. Nurul Amin ◽  
Anayet Ullah Patwari

Surface finish and dimensional accuracy is one of the most important requirements in machining process. Inconel 718 has been widely used in the aerospace industries. High speed machining (HSM) is capable of producing parts that require little or no grinding/lapping operations within the required machining tolerances. In this study small diameter tools are used to achieve high rpm to facilitate the application of low values of feed and depths of cut to investigate better surface finish in high speed machining of Inconel 718. This paper describes mathematically the effect of cutting parameters on Surface roughness in high speed end milling of Inconel 718. The mathematical model for the surface roughness has been developed in terms of cutting speed, feed rate, and axial depth of cut using design of experiments and the response surface methodology (RSM). Central composite design was employed in developing the surface roughness models in relation to primary cutting parameters. Machining were performed using CNC Vertical Machining Center (VMC) with a HES510 high speed machining attachment in which using a 4mm solid carbide fluted flat end mill tool. Wyko NT1100 optical profiler was used to measure the definite machined surface for obtaining the surface roughness data. The predicted results are in good agreement with the experimental one and hence the model can be efficiently used to predict the surface roughness value with in the specified cutting conditions limit.

2011 ◽  
Vol 264-265 ◽  
pp. 888-893
Author(s):  
Mokhtar Suhaily ◽  
A.K.M. Nurul Amin ◽  
Anayet Ullah Patwari

Surface finish and dimensional accuracy is one of the most important requirements in machining process. Inconel 718 has been widely used in the aerospace industries. High speed machining (HSM) is capable of producing parts that require little or no grinding/lapping operations within the required machining tolerances. In this study small diameter tools are used to achieve high rpm to facilitate the application of low values of feed and depths of cut to investigate better surface finish in high speed machining of Inconel 718. This paper describes mathematically the effect of cutting parameters on Surface roughness in high speed end milling of Inconel 718. The mathematical model for the surface roughness has been developed in terms of cutting speed, feed rate, and axial depth of cut using design of experiments and the response surface methodology (RSM). Central composite design was employed in developing the surface roughness models in relation to primary cutting parameters. Machining were performed using CNC Vertical Machining Center (VMC) with a HES510 high speed machining attachment in which using a 4mm solid carbide fluted flat end mill tool. Wyko NT1100 optical profiler was used to measure the definite machined surface for obtaining the surface roughness data. The predicted results are in good agreement with the experimental one and hence the model can be efficiently used to predict the surface roughness value with in the specified cutting conditions limit.


Author(s):  
Prof. Hemant k. Baitule ◽  
Satish Rahangdale ◽  
Vaibhav Kamane ◽  
Saurabh Yende

In any type of machining process the surface roughness plays an important role. In these the product is judge on the basis of their (surface roughness) surface finish. In machining process there are four main cutting parameter i.e. cutting speed, feed rate, depth of cut, spindle speed. For obtaining good surface finish, we can use the hot turning process. In hot turning process we heat the workpiece material and perform turning process multiple time and obtain the reading. The taguchi method is design to perform an experiment and L18 experiment were performed. The result is analyzed by using the analysis of variance (ANOVA) method. The result Obtain by this method may be useful for many other researchers.


2010 ◽  
Vol 126-128 ◽  
pp. 911-916 ◽  
Author(s):  
Yuan Wei Wang ◽  
Song Zhang ◽  
Jian Feng Li ◽  
Tong Chao Ding

In this paper, Taguchi method was applied to design the cutting experiments when end milling Inconel 718 with the TiAlN-TiN coated carbide inserts. The signal-to-noise (S/N) ratio are employed to study the effects of cutting parameters (cutting speed, feed per tooth, radial depth of cut, and axial depth of cut) on surface roughness, and the optimal combination of the cutting parameters for the desired surface roughness is obtained. An exponential regression model for the surface roughness is formulated based on the experimental results. Finally, the verification tests show that surface roughness generated by the optimal cutting parameters is really the minimum value, and there is a good agreement between the predictive results and experimental measurements.


2019 ◽  
Vol 943 ◽  
pp. 66-71
Author(s):  
Moola Mohan Reddy ◽  
Viviana Yong Chai Nie

This research work considered the high speed milling operation of Inconel 718 using a 4 flute solid carbide end mill tool without the use of coolant. Inconel 718 is a Nickel based Heat Resistance Super Alloy (HRSA) that is vastly used in the aerospace industries due to its excellent corrosion resistance and good mechanical properties. However, Inconel 718 is considered as a difficult-to-cut super alloy, which poses several problems when machining the material. The aim of this work is to investigate the effect and the influence of cutting parameters (feed rate, spindle speed, and depth of cut) on the quality of the machined surface as well as to evaluate the tool wear after machining. This evaluation of the surface roughness was done using a CNC milling machine at various parameters range for the values of feed rate (50-150 mm/min), spindle speed (2000-4000 RPM), and depth of cut (0.05-0.1 mm). The experiment was designed using Response Surface Analysis Method with Central Composite Design (CCD) to optimize the experimentation. The resulting tool wear and surface roughness after high speed machining were then analysed using ANOVA to determine the cutting parameters which is most affecting the surface roughness.


2011 ◽  
Vol 264-265 ◽  
pp. 1166-1173 ◽  
Author(s):  
S. Alam ◽  
A.K.M. Nurul Amin ◽  
Mohamed Konneh ◽  
Anayet Ullah Patwari

High Speed Machining is applicable for producing parts that require little or no grinding / polishing operations within the required machining tolerances. For achieving required level of quality, selection of cutting tools and parameters in high speed machining is very important. In this study, small diameter flat end milling tool was used to achieve high rpm to facilitate the application of low values of feed and depth of cut to achieve better surface roughness. Machining was performed on a Vertical Machining Centre (VMC) with a high speed milling attachment (HES 510), using cutting speed, depth of cut, and feed as machining variables. Statistical prediction model of average surface roughness was developed using three-level full factorial design of experiments. It was observed that depth of cut is the most dominating factor followed by cutting speed and feed. The developed model was used for optimization by desirability function approach to obtain minimum Ra. Maximum desirability of 95.63% was obtained.


2011 ◽  
Vol 418-420 ◽  
pp. 1237-1241
Author(s):  
A.K.M. Nurul Amin ◽  
Mohd Dali M Ismail ◽  
Muhammad Iqbal Musa ◽  
Anayet Ullah Patwari

Surface finish and dimensional accuracy are two of the most important requirements in machining process. High speed machining (HSM) is capable of producing parts that require little or no grinding/lapping operations within the required machining tolerances. In HSM determination of the optimum combination of cutting parameters for achieving the required level of quality, such as, minimum possible surface roughness and maximum tool life is a very important task. Silicon is conventionally finished using grinding followed by polishing and lapping to achieve required surface finish and surface integrity. In this study small diameter tools are used to achieve high rpm to facilitate the application of low values of feed and depths of cut to ensure high surface roughness values through achievement of ductile mode machining of silicon. Investigations on the effect cutting parameters of high speed end milling on surface finish and integrity of silicon has been conducted to minimizing the amount of finishing requirement in machining of silicon, with the objective of reducing cost and increasing effectiveness of silicon manufacturing process. In this work statistical models were developed using the capabilities of Response Surface Methodology (RSM) to predict the surface roughness in high speed flat end milling of silicon under dry cutting conditions.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


2011 ◽  
Vol 264-265 ◽  
pp. 1154-1159
Author(s):  
Anayet Ullah Patwari ◽  
A.K.M. Nurul Amin ◽  
S. Alam

Titanium alloys are being widely used in the aerospace, biomedical and automotive industries because of their good strength-to-weight ratio and superior corrosion resistance. Surface roughness is one of the most important requirements in machining of Titanium alloys. This paper describes mathematically the effect of cutting parameters on Surface roughness in end milling of Ti6Al4V. The mathematical model for the surface roughness has been developed in terms of cutting speed, feed rate, and axial depth of cut using design of experiments and the response surface methodology (RSM). Central composite design was employed in developing the surface roughness models in relation to primary cutting parameters. The experimental results indicate that the proposed mathematical models suggested could adequately describe the performance indicators within the limits of the factors that are being investigated. The developed RSM is coupled as a fitness function with genetic algorithm to predict the optimum cutting conditions leading to the least surface roughness value. MATLAB 7.0 toolbox for GA is used to develop GA program. The predicted results are in good agreement with the experimental one and hence the model can be efficiently used to achieve the minimum surface roughness value.


2014 ◽  
Vol 68 (4) ◽  
Author(s):  
M. S. Said ◽  
J. A. Ghani ◽  
R. Othman ◽  
M. A. Selamat ◽  
N. N. Wan ◽  
...  

The purpose of this research is to demonstrate surface roughness and chip formation by the machining of Aluminium silicon alloy (AlSic) matrix composite, reinforced with aluminium nitride (AlN), with three types of carbide inserts present. Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to the Taguchi method, using a standard orthogonal array L9 (34). The effects of cutting speeds, feed rates, depths of cut, and types of tool on surface roughness during the milling operation were evaluated using Taguchi optimization methodology, using the signal-to-noise (S/N) ratio. The surface finish produced is very important in determining whether the quality of the machined part is within specification and permissible tolerance limits. It is understood that chip formation is a fundamental element that influences tool performance. The analysis of chip formation was done using a Sometech SV-35 video microscope. The analysis of results, using the S/N ratio, concluded that a combination of low feed rate, low depth of cut, medium cutting speed, and an uncoated tool, gave a remarkable surface finish. The chips formed from the experiment varied from semi–continuous to discontinuous. 


Sign in / Sign up

Export Citation Format

Share Document