scholarly journals In Situ Measurement of Internal Stresses and Strain Rates by High Energy X-Ray Diffraction during High Temperature Mechanical Testing

2011 ◽  
Vol 278 ◽  
pp. 48-53 ◽  
Author(s):  
Alain Jacques ◽  
Laura Dirand ◽  
Jean Philippe Chateau ◽  
Thomas Schenk ◽  
Olivier Ferry ◽  
...  

The combination of high temperature (1050°C -1150°C) testing and in situ high energy X-Ray diffraction measurements using synchrotron Three Crystal Diffractometry may give various insights into the mechanical behaviour of superalloys: measurement of the lattice mismatch, order within the ' phase, elastic constants, and dynamic response to changes in the experimental conditions. Several examples are given on the rafted AM1 superalloy, resulting from experiments at the ID15A (ESRF) and BW5 (DESY) high energy beamlines.

2007 ◽  
Vol 539-543 ◽  
pp. 1519-1524 ◽  
Author(s):  
Klaus Dieter Liss ◽  
A. Bartels ◽  
Helmut Clemens ◽  
S. Bystrzanowski ◽  
A. Stark ◽  
...  

High-energy synchrotron X-ray diffraction is a novel and powerful tool for bulk studies of materials. In this study, it is applied for the investigation of an intermetallic γ-TiAl based alloy. Not only the diffraction angles, but also the morphology of reflections on the Debye-Scherrer rings are evaluated in order to approach lattice parameters and grain sizes as well as crystallographic relationships. An in-situ heating cycle from room temperature to 1362 °C has been conducted starting from massively transformed γ-TiAl which exhibits high internal stresses. With increasing temperature the occurrence of strain relaxation, chemical and phase separation, domain orientations, phase transitions, recrystallization processes, and subsequent grain growth can be observed. The data obtained by high-energy synchrotron X-ray diffraction, extremely rich in information, are interpreted step by step.


Materialia ◽  
2019 ◽  
Vol 5 ◽  
pp. 100220 ◽  
Author(s):  
Matthew Carl ◽  
Jesse Smith ◽  
Robert W. Wheeler ◽  
Yang Ren ◽  
Brian Van Doren ◽  
...  

1989 ◽  
Vol 145 ◽  
Author(s):  
M. T. Asom ◽  
E. A. Fitzgerald ◽  
F. A. Thiel ◽  
R. People ◽  
D. Eaglesham ◽  
...  

AbstractWe have employed molecular beam epitaxy in the growth of InSb on GaAs and InP. The transport, optical and structural properties of the films were investigated by in-situ reflection high energy electron diffraction, Hall effect and temperature dependent Hall effect, photoluminescence, transmission electron microscopy and X-ray diffractometry techniques. We report mobilities of up to 32,000 cm2/volt-sec and free electron concentrations of 3x1016/cm3 at room temperature. We have discovered a new defect state in InSb with an energy position of Ec - 0.05 ± 0.006eV. Optical and structural measurements reveal that the differences in thermal expansion and lattice mismatch between the substrates and films results in the broadening of the X-ray diffraction peaks and the near gap photoluminescence linewidths. Furthermore, we observe band gap shifts to higher energies of 10meV and 20meV for growth on GaAs and InP, respectively.


2020 ◽  
Vol 194 ◽  
pp. 565-576 ◽  
Author(s):  
Bo Feng ◽  
Xiangguang Kong ◽  
Shijie Hao ◽  
Yinong Liu ◽  
Ying Yang ◽  
...  

2014 ◽  
Vol 996 ◽  
pp. 118-123 ◽  
Author(s):  
Andrzej Baczmański ◽  
Elżbieta Gadalińska ◽  
Sebastian Wroński ◽  
Chedly Braham ◽  
Wilfrid Seiler ◽  
...  

Owing to its selectivity, diffraction is a powerful tool for analysing the mechanical behaviour of polycrystalline materials at the mesoscale, i.e. phase and grain scale. In situ synchrotron diffraction (transmission mode) during tensile tests and modified self-consistent elastoplastic model were used to study elastic and plastic phenomena occurring in polycrystalline specimens during deformation. The evolution of stress for grains which belong to different phases of duplex stainless steel and pearlitic steel was analyzed.


2016 ◽  
Vol 52 (96) ◽  
pp. 13865-13868 ◽  
Author(s):  
Saul J. Moorhouse ◽  
Yue Wu ◽  
Hannah C. Buckley ◽  
Dermot O'Hare

We report the first use of high-energy monochromatic in situ X-ray powder diffraction to gain unprecedented insights into the chemical processes occurring during high temperature, lab-scale metal oxide syntheses.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1335
Author(s):  
Mathias Lamari ◽  
Sébastien Y. P. Allain ◽  
Guillaume Geandier ◽  
Jean-Christophe Hell ◽  
Astrid Perlade ◽  
...  

Duplex medium Mn steels are high-potential advanced high-strength steels (AHSS) for automotive construction. Their excellent forming properties stem from the specific stress partitioning between their constituting phases during deformation, namely the ferritic matrix, unstable retained austenite, and strain-induced fresh martensite. The stability of the retained austenite and the 3D stress tensors of each phase are determined simultaneously in this work by in situ high energy X-ray diffraction on synchrotron beamline during a tensile test. The role of internal stresses inherited from the manufacturing stage are highlighted for the first time as well as new insights to understand the origin of the serrations shown by these alloys.


Sign in / Sign up

Export Citation Format

Share Document