The Anti-Inflammatory Effects of Biomaterials Cross-Linked with Genipin

2011 ◽  
Vol 282-283 ◽  
pp. 412-416 ◽  
Author(s):  
Yan Fei Song ◽  
Shan Shan Ding ◽  
Yuan Lu Cui ◽  
Qiang Song Wang ◽  
Lei Ye ◽  
...  

This study was aimed to investigate the anti-inflammatory effects of the chitosan/gelatin membrane cross-linked with genipin (GP). Fourier transform infrared spectrophotometry (FT-IR) was used to characterize the cross-linking reaction. The XTT assay was applied to evaluate the cytotoxicity of the chitosan/gelatin membrane with RAW264.7 cells. Production of nitric oxide (NO) was measured by the Griess colorimetric method. The gene expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and IL-6 were detected by quantitative real-time reverse-transcription polymerase chain reaction (real-time RT-PCR). These results suggested that the anti-inflammatory effects of genipin cross-linked chitosan/gelatin membrane might be the results from modulating the NO/iNOS pathway and inhibiting the mRNA expression of COX-2, IL-6 in activated macrophages.

2013 ◽  
Vol 658 ◽  
pp. 30-33
Author(s):  
Qiang Song Wang ◽  
Xiang Li ◽  
Yuan Lu Cui

In the present study, the anti-inflammatory effects of tetrandrine-loading poly (L-lactic acid) (PLLA) films were investigated in vitro. The surface characteristics of blank PLLA film and tetrandrine-loading PLLA films were examined by electron spectroscopy for chemical analysis (ESCA). The ESCA data suggested that the tetrandrine-loading PLLA films became enriched with nitrogen atoms. The MTT assay was applied to evaluate the cytotoxicity of PLLA films with RAW264.7 cells. Production of nitric oxide (NO) was measured by the Griess colorimetric method. The gene expression levels of inducible nitric oxide synthase (iNOS) and IL-6 were detected by quantitative real-time reverse-transcription polymerase chain reaction (real-time RT-PCR). These results suggested that the anti-inflammatory effects of tetrandrine-loading PLLA films might be the results from modulating the NO/iNOS pathway and inhibiting the mRNA expression of iNOS and IL-6 in activated macrophages.


2014 ◽  
Vol 9 (7) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Min Hye Yang ◽  
Zulfiqar Ali ◽  
Ikhlas A. Khan ◽  
Shabana I. Khan

This study was aimed at the evaluation of the anti-inflammatory activity of twelve compounds isolated from the methanolic extract of fruits of Terminalia chebula. The activity was determined in terms of their ability to inhibit inducible nitric oxide synthase ( iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated macrophages. Two gallotannins [chebulinic acid (1) and 2,3,6-tri- O-galloyl-β-D-glucose (2)] and two triterpenoids [arjunic acid (3) and arjunolic acid (4)] efficiently reduced nitric oxide (NO) production with IC50 values of 53.4, 55.2, 48.8, and 38.0 μM, respectively. The protein expressions of iNOS and COX-2 were decreased in macrophages by treatment with compounds 1–4 (54–69% and 33–37%, respectively) at 50 μM. This is the first report of anti-inflammatory property of 1–4 mediated by inhibition of iNOS and COX-2 activities at the cellular level.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Dan-Dan Zhang ◽  
Hong Zhang ◽  
Yuan-zhi Lao ◽  
Rong Wu ◽  
Jin-wen Xu ◽  
...  

GarciniaLinn. plants having rich natural xanthones and benzophenones with anti-inflammatory activity attracted a great deal of attention to discover and develop them as potential drug candidates. Through screening targeting nitric oxide accumulation in stimulated macrophage, we found that 1,3,5,7-tetrahydroxy-8-isoprenylxanthone (TIE) had potential anti-inflammatory effect. To understand how TIE elicits its anti-inflammatory activity, we uncovered that it significantly inhibits the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS/IFNγ-stimulated RAW264.7 cells. In further study, we showed that TIE reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), two key molecules responsible for the production of NO and PGE2 during inflammation progress. Additionally, TIE also suppressed the expression of inflammatory cytokines IL-6, IL-12, and TNF-α. TIE-led suppression in iNOS, COX-2, and cytokines production were probably the consequence of TIE’s capability to block ERK and p38MAPK signaling pathway. Moreover, TIE blocked activation of nuclear factor-kappa B (NF-κB) as well as NF-κB regulation of miR155 expression. Our study suggests that TIE may represent as a potential therapeutic agent for the treatment of inflammatory diseases.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Shyh-Shyun Huang ◽  
Chuan-Sung Chiu ◽  
Hsien-Jung Chen ◽  
Wen-Chi Hou ◽  
Ming-Jyh Sheu ◽  
...  

Asiatic acid (AA), a pentacyclic triterpene compound in the medicinal plantCentella asiatica, was evaluated for antinociceptive and anti-inflammatory effects. Treatment of male ICR mice with AA significantly inhibited the numbers of acetic acid-induced writhing responses and the formalin-induced pain in the late phase. In the anti-inflammatory test, AA decreased the paw edema at the 4th and 5th h afterλ-carrageenan (Carr) administration and increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the liver tissue. AA decreased the nitric oxide (NO), tumor necrosis factor-α(TNF-α), and interleukin-1β(IL-1β) levels on serum level at the 5th h after Carr injection. Western blotting revealed that AA decreased Carr-induced inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and nuclear factor-κB (NF-κB) expressions at the 5th h in the edema paw. An intraperitoneal (i.p.) injection treatment with AA also diminished neutrophil infiltration into sites of inflammation as did indomethacin (Indo). The anti-inflammatory mechanisms of AA might be related to the decrease in the level of MDA, iNOS, COX-2, and NF-κB in the edema paw via increasing the activities of CAT, SOD, and GPx in the liver.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Chanyong Yun ◽  
Youngchul Jung ◽  
Wonjoo Chun ◽  
Beodeul Yang ◽  
Junghyun Ryu ◽  
...  

The leaves ofArtemisia argyiLev. et Vant. andA. princepsPamp. are well known medicinal herbs used to treat patients in China, Japan, and Korea with skin problems such as eczema and itching, as well as abdominal pain and dysmenorrhoea. We investigated the anti-inflammatory effects ofArtemisialeaf extract (ALE) using CD mice and Raw 264.7 cells. The effects of ALE on histopathological changes and cytokine production in ear tissues were assessed in mice with CD induced by 1-fluoro-2,4-dinitrobenzene (DNFB). Moreover, the anti-inflammatory effects on production levels of prostaglandin E2(PGE2) and nitric oxide (NO) and expression levels of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) were investigated in Raw 264.7 cells. Topical application of ALE effectively prevented ear swelling induced by repeated DNFB application. ALE prevented epidermal hyperplasia and infiltration of immune cells and lowered the production of interferon- (IFN-) gamma (γ), tumour necrosis factor- (TNF-) alpha (α), and interleukin- (IL-) 6 in inflamed tissues. In addition, ALE inhibited expression of COX-2 and iNOS and production of NO and PGE2in Raw 264.7 cells. These results indicate thatArtemisialeaf can be used as a therapeutic agent for inflammatory skin diseases and that its anti-inflammatory effects are closely related to the inhibition of inflammatory mediator release from macrophages and inflammatory cytokine production in inflamed tissues.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4089
Author(s):  
Seung-Hwa Baek ◽  
Tamina Park ◽  
Myung-Gyun Kang ◽  
Daeui Park

We evaluated the anti-inflammatory effects of SNAH in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by performing nitric oxide (NO) assays, cytokine enzyme-linked immunosorbent assays, Western blotting, and real-time reverse transcription-polymerase chain reaction analysis. SNAH inhibited the production of NO (nitric oxide), reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, and interleukin (IL)-6. Additionally, 100 μM SNAH significantly inhibited total NO and ROS inhibitory activity by 93% (p < 0.001) and 34% (p < 0.05), respectively. Protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) stimulated by LPS were also decreased by SNAH. Moreover, SNAH significantly (p < 0.001) downregulated the TNF-α, IL-6, and iNOS mRNA expression upon LPS stimulation. In addition, 3–100 µM SNAH was not cytotoxic. Docking simulations and enzyme inhibitory assays with COX-2 revealed binding scores of −6.4 kcal/mol (IC50 = 47.8 μM) with SNAH compared to −11.1 kcal/mol (IC50 = 0.45 μM) with celecoxib, a known selective COX-2 inhibitor. Our results demonstrate that SNAH exerts anti-inflammatory effects via suppression of ROS and NO by COX-2 inhibition. Thus, SNAH may be useful as a pharmacological agent for treating inflammation-related diseases.


2021 ◽  
Vol 22 (2) ◽  
pp. 505
Author(s):  
Hyo-Shin Kwon ◽  
Gil-Saeng Jeong ◽  
Byeong-Churl Jang

Cudratricusxanthone A (CTXA) is a natural bioactive compound extracted from the roots of Cudrania tricuspidata Bureau and has been shown to possess anti-inflammatory, anti-proliferative, and hepatoprotective activities. However, at present, anti-adipogenic and anti-inflammatory effects of CTXA on adipocytes remain unclear. In this study, we investigated the effects of CTXA on lipid accumulation and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, two known inflammatory enzymes, in 3T3-L1 preadipocytes. Strikingly, CTXA at 10 µM markedly inhibited lipid accumulation and reduced triglyceride (TG) content during 3T3-L1 preadipocyte differentiation with no cytotoxicity. On mechanistic levels, CTXA at 10 µM suppressed not only expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A, but also phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during 3T3-L1 preadipocyte differentiation. In addition, CTXA at 10 µM up-regulated phosphorylation levels of cAMP-activated protein kinase (AMPK) while down-regulating expression and phosphorylation levels of acetyl-CoA carboxylase (ACC) during 3T3-L1 preadipocyte differentiation. Moreover, CTXA at 10 µM greatly attenuated tumor necrosis factor (TNF)-α-induced expression of iNOS, but not COX-2, in 3T3-L1 preadipocytes. These results collectively demonstrate that CTXA has strong anti-adipogenic and anti-inflammatory effects on 3T3-L1 cells through control of the expression and phosphorylation levels of C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, STAT-3/5, AMPK, and iNOS.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 470
Author(s):  
Kyong Kim ◽  
Eun-Young Park ◽  
Dong-Jae Baek ◽  
Chul-Young Kim ◽  
Yoon-Sin Oh

This study was conducted to evaluate the fractions isolated from Allomyrina dichotoma larva extract (ADLE) that exhibited anti-apoptotic and anti-inflammatory effects. A total of 13 fractions were eluted from ADLE by centrifugal chromatography (CPC), and the polar AF-13 fraction was selected, which exerted a relatively protective effect against fat-induced toxicity in INS-1 cells. AF-13 treatment of palmitate-treated INS-1 cells decreased the expression level of apoptosis-related proteins and DNA fragmentation. AF-13 also significantly inhibited the production of nitric oxide and reactive oxygen species and the triglyceride content induced by palmitate, and the effect was found to be similar to that with ADLE treatment. Palmitate upregulated the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) through the activation of NF-κB p65; however, this effect was significantly attenuated by AF-13 treatment. In conclusion, AF-13 is one of the major components of ADLE responsible for anti-apoptotic and anti-inflammatory activities.


2021 ◽  
Author(s):  
Anuradha Kalita ◽  
MANAS DAS ◽  
Bhabajyoti Das ◽  
Momita Rani Baro

Abstract Garcinia is a tropical plant that has been traditionally used in medicinal folklore for its potential antioxidant, antibacterial, anti-hyperlipidemic, anti-diabetic, hepatoprotective, etc. In this study, Garcinia herbal extract (GHE) and one of its important phytocompound (garcinol) were evaluated for their inhibitory action against important inflammatory markers inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. iNOS and COX-2 plays an major role in the process of inflammation and inhibition of these molecules will help to alleviate the inflammatory process. The cells were pre-treated with two doses of Garcinia (230µg/ml and 115µg/ml); garcinol (12µM and 6µM) followed by stimulation with 1µg/ml of LPS for 24h. The results of the study demonstrated that GHE and garcinol plays an important role in suppressing LPS- induced relative mRNA expression of iNOS, COX-2 and subsequent reduction in the levels of nitric oxide and prostaglandin E 2 . Molecular docking analysis of garcinol and hydroxycitric acid, the major active components of GHE with iNOS and COX-2 proteins showed potent interaction with low binding energies. This study suggests that GHE (containing high percentage of HCA) and garcinol may possess anti-inflammatory activity thus providing a possibility for drug designing as iNOS and COX-2 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document