Self-Powered Device Using Aligned Carbon Nanotube Arrays in Multi-Physics Fields

2011 ◽  
Vol 287-290 ◽  
pp. 1505-1508 ◽  
Author(s):  
Jiang Lei Lu ◽  
Guang Long Wang ◽  
Lian Feng Sun ◽  
Min Gao ◽  
Jian Hui Chen ◽  
...  

A novel self-powered device based on the aligned carbon nanotube arrays (CNTA) in multi-physics fields has been put forward in this paper. Synthetically utilizing the photic, fluidic and thermic properties of carbon nanotubes, the multi-physical nanogenerators (MPNG) can generate electric currents when the solar irradiation and air flow synchronously effect on the material surface. Various MPNGs are connected in series to construct a unique truncated conus and cylinder shell structure in order to enhance the output voltage for self-powered electronic devices. The multi-physical power mechanism is formed by converting the solar and air flow energy to the thermoelectric effect. By the finite element analysis, the MPNG model including a pair of p-type and n-type CNTA elements is established, and its temperature and potential distribution are simulated. This self-powered device in multi-physics fields can be applied to a more complicated environment and has a fine prospect.

2007 ◽  
Vol 91 (13) ◽  
pp. 131905 ◽  
Author(s):  
Ming Hu ◽  
Sergei Shenogin ◽  
Pawel Keblinski ◽  
Nachiket Raravikar

2021 ◽  
Author(s):  
Jeonyoon Lee ◽  
Luiz H. Acauan ◽  
Estelle Kalfon-Cohen ◽  
Seth S. Kessler ◽  
Brian L. Wardle

Nanoscale ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 261-271
Author(s):  
Ashley L. Kaiser ◽  
Dale L. Lidston ◽  
Sophie C. Peterson ◽  
Luiz H. Acauan ◽  
Stephen A. Steiner ◽  
...  

Aligned carbon nanotube (CNT) array adhesion strength evolves with CNT process time, decreasing and then increasing during growth and annealing, as captured by models relating CNT diameter, array effective modulus, and CNT–substrate work of adhesion.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1810
Author(s):  
Mengjie Li ◽  
Qilong Wang ◽  
Ji Xu ◽  
Jian Zhang ◽  
Zhiyang Qi ◽  
...  

Due to the high field enhancement factor and photon-absorption efficiency, carbon nanotubes (CNTs) have been widely used in optically induced field-emission as a cathode. Here, we report vertical carbon nanotube arrays (VCNTAs) that performed as high-density electron sources. A combination of high applied electric field and laser illumination made it possible to modulate the emission with laser pulses. When the bias electric field and laser power density increased, the emission process is sensitive to a power law of the laser intensity, which supports the emission mechanism of optically induced field emission followed by over-the-barrier emission. Furthermore, we determine a polarization dependence that exhibits a cosine behavior, which verifies the high possibility of optically induced field emission.


Sign in / Sign up

Export Citation Format

Share Document