Influence of Oxide Doping on Co3O4-CeO2 for CO Oxidation

2011 ◽  
Vol 287-290 ◽  
pp. 1718-1722 ◽  
Author(s):  
Jian Xin Cai ◽  
Yi Hao Lv ◽  
Rong Bin Zhang ◽  
Lai Tao Luo

Ce0.7M0.3CoOx catalysts were prepared by polyatomic alcohol method. The crystal structure, reduction and adsorption properties, and specific surface were investigated by XRD, TPR, TPD, BET, respectively. The results show that catalysts doped with different oxides can make great effects on the catalytic properties of the Co3O4-CeO2. The interaction between doping oxides (SrO, NiO, La2O3, ZrO2, Nd2O3) and Co3O4-CeO2 is contributed to the change of the reduction and adsorption performance, and specific surface area of the catalysts. SrO doping can promote CeO2 reduction, CO adsorption and low-temperature oxidative activity of the catalysts. The conversion of CO can reach 100% over the Ce0.7Sr0.3CoOx at 120 °C temperature.

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2527
Author(s):  
Tingting Niu ◽  
Bin Zhou ◽  
Zehui Zhang ◽  
Xiujie Ji ◽  
Jianming Yang ◽  
...  

Resorcinol-formaldehyde/titanium dioxide composite (RF/TiO2) gel was prepared simultaneously by acid catalysis and then dried to aerogel with supercritical fluid CO2. The carbon/titanium dioxide aerogel was obtained by carbonization and then converted to nanoporous titanium carbide/carbon composite aerogel via 800 °C magnesiothermic catalysis. Meanwhile, the evolution of the samples in different stages was characterized by X-ray diffraction (XRD), an energy-dispersive X-ray (EDX) spectrometer, a scanning electron microscope (SEM), a transmission electron microscope (TEM) and specific surface area analysis (BET). The results showed that the final product was nanoporous TiC/C composite aerogel with a low apparent density of 339.5 mg/cm3 and a high specific surface area of 459.5 m2/g. Comparing to C aerogel, it could also be considered as one type of highly potential material with efficient photothermal conversion. The idea of converting oxide–carbon composite into titanium carbide via the confining template and low-temperature magnesiothermic catalysis may provide new sight to the synthesis of novel nanoscale carbide materials.


2012 ◽  
Vol 209-211 ◽  
pp. 1990-1994 ◽  
Author(s):  
Qin Zhang ◽  
Zhao Hui Zhang ◽  
Liang Wang ◽  
Zi Long Zhang ◽  
Xing Fei Guo

The properties of four different activated carbon fiber cloth (ACF), such as specific surface area, pore volumes and pore size distribution, were evaluated. The relationship between ACF properties and its electrosorption performance was analyzed. The experimental results show that pore structure has more influence on the performance of ACF electrode than that of specific surface area for ACF material. More abundant mesopores and shallower pore channels for ACF is favorable to improve the specific capacitance and electrosorption capacity of ions.


2010 ◽  
Vol 92 ◽  
pp. 163-169
Author(s):  
Hong Xia Qiao ◽  
Zhi Qiang Wei ◽  
Ming Ru Zhou ◽  
Zhong Mao He

Copper nanoparticles were successfully prepared in large scales by means of anodic arc discharging plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), BET equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). The experiment results indicate that the crystal structure of the samples is fcc structure as same as that of the bulk materials. The specific surface area is is 11 m2/g, with the particle size distribution ranging from 30 to 90 nm, the average particle size about 67nm obtained from TEM and confirmed from XRD and BET results. The nanoparticles have uniform size, higher purity, narrow size distribution and spherical shape can be prepared by this convenient and effective method.


2011 ◽  
Vol 356-360 ◽  
pp. 1253-1257
Author(s):  
Xiao Ming Gao ◽  
Yu Fei Wu ◽  
Jing Wang ◽  
Feng Fu ◽  
Li Ping Zhang ◽  
...  

An enhanced visible-light-driven catalyst BiVO4 doping with Cu was synthesized by hydrothermal method and characterized by XRD, UV-vis DRS, specific surface area. The characterization results indicated a better crystal structure of Cu-BiVO4. The photocatalytic properties were evaluated by degrading wastewater with phenol, taking pH of catalysts prepared, dosage of catalyst and air flow as the research factors. The results showed that Cu-BiVO4 has an effective photodegradation of phenol under the suitable conditions.


NANO ◽  
2018 ◽  
Vol 13 (04) ◽  
pp. 1850036 ◽  
Author(s):  
Guiqiang Diao ◽  
Hao Li ◽  
Hao Liang ◽  
Iryna Ivanenko ◽  
Tetiana Dontsova ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) were synthesized onto a series of individual and bimetallic catalysts by the chemical vapor deposition (CVD) of acetylene at low temperature (600[Formula: see text]C). The catalysts were prepared by two methods, i.e., precipitation and sol–gel, with two different carriers – MgO and Al2O3. The catalysts were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric (TG) analysis, low-temperature adsorption of nitrogen. The yield of the MWCNTs was calculated in two ways, while the highest yield of 800% was achieved onto the two-component NiO/Co2O3/MgO catalyst, SEM and transmission electron microscopy (TEM) results confirm that uniform tube-like structure MWCNTs with the yield of 410% were obtained onto Co2O3/Al2O3 catalyst. These MWCNTs are smooth and pointing in the same direction. Their tube diameter is about 20[Formula: see text]nm, which is the smallest around all observed MWCNTs. Moreover, nonuniform curved bamboo-like MWCNTs with nozzles in the yield of 760% were obtained onto NiO/V2O3/MgO catalyst. Their diameter ranges from 25[Formula: see text]nm to 50[Formula: see text]nm. Results show that single-component catalyst promotes the growth of uniform and smaller nanotubes. Among the as-grown nanotubes, their specific surface area increases and average pores diameter reduces after the treatment with concentrated nitric acid at reflux and washing condition. The largest specific surface area (305[Formula: see text]m2/g) and average pores diameter (26[Formula: see text]m2/g) are processed to MWCNTs grown onto the NiO/Co2O3/MgO catalyst. MWCNTs with such large structural adsorption characteristics and purity of more than 99% obtained with yield 800% show potential use for preparation of nanocomposites as anode materials in lithium ion batteries.


2020 ◽  
Vol 10 (11) ◽  
pp. 3761
Author(s):  
Muhammed Ali S.A. ◽  
Jarot Raharjo ◽  
Mustafa Anwar ◽  
Deni Shidqi Khaerudini ◽  
Andanastuti Muchtar ◽  
...  

Perovskite-based composite cathodes, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)–Ce0.8Sm0.2O1.9-carbonate (SDCC), were investigated as cathode materials for low-temperature solid-oxide fuel cells. The LSCF was mixed with the SDC–carbonate (SDCC) composite electrolyte at different weight percentages (i.e., 30, 40, and 50 wt %) to prepare the LSCF–SDCC composite cathode. The effect of SDCC composite electrolyte content on the diffraction pattern, microstructure, specific surface area, and electrochemical performances of the LSCF–SDCC composite cathode were evaluated. The XRD pattern revealed that the SDCC phase diffraction peaks vary according to its increasing addition to the system. The introduction of SDCCs within the composite cathode did not change the LSCF phase structure and its specific surface area. However, the electrical performance of the realized cell drastically changed with the increase of the SDCC content in the LSCF microstructure. This drastic change can be ascribed to the poor in-plane electronic conduction at the surface of the LSCF cathode layer due to the presence of the insulating phase of SDC and molten carbonate. Among the cathodes investigated, LSCF–30SDCC showed the best cell performance, exhibiting a power density value of 60.3–75.4 mW/cm2 at 600 °C to 650 °C.


Sign in / Sign up

Export Citation Format

Share Document