Triethanolamine Molybdate, a New Polymeric Precursor for Molybdenum Nitride

2007 ◽  
Vol 29-30 ◽  
pp. 195-198
Author(s):  
S. Mondal ◽  
A.K. Banthia

Nitrides remain a relatively unexplored class of materials primarily due to the difficulties associated with their synthesis and characterization. Several synthetic routes, including high temperature reactions, microwave assisted synthesis, and the use of plasmas, to prepare binary and ternary nitrides have been explored. Transition metal nitrides form a class of materials with unique physical properties, which give them varied applications, as high temperature ceramics, magnetic materials, superconductors or catalysts. They are commonly prepared by high temperature conventional processes, but alternative synthetic approaches have also been explored, more recently, which utilize moderate temperature condition. Transition metal nitrides particularly, molybdenum nitride, niobium nitride, and tungsten nitride have important applications as catalyst in hydrodenitridation reactions. These nitrides have been traditionally synthesized using high temperature nitridation treatments of the oxides. The nitridation temperatures are very high (> 800- 1000 oC). The aim of our work is to synthesize molybdenum nitride by a simple, low-temperature route. The method involves pyrolysis of a polymeric precursor, which was prepared from the condensation reaction between triethanolamine and molybdic acid. The melting point of the product is 180oC. The polymeric precursor and its pyrolyzed products are characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). X-ray diffraction shows that molybdenum nitride (MoN) obtained from this method has hexagonal crystal structure. MoN is obtained by this method at very low temperature (~ 400 oC).

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
M. Meindlhumer ◽  
S. Klima ◽  
N. Jäger ◽  
A. Stark ◽  
H. Hruby ◽  
...  

AbstractThe dependence of decomposition routes on intrinsic microstructure and stress in nanocrystalline transition metal nitrides is not yet fully understood. In this contribution, three Al0.7Cr0.3N thin films with residual stress magnitudes of −3510, −4660 and −5930 MPa in the as-deposited state were in-situ characterized in the range of 25–1100 °C using in-situ synchrotron high-temperature high-energy grazing-incidence-transmission X-ray diffraction and temperature evolutions of phases, coefficients of thermal expansion, structural defects, texture as well as residual, thermal and intrinsic stresses were evaluated. The multi-parameter experimental data indicate a complex intrinsic stress and phase changes governed by a microstructure recovery and phase transformations taking place above the deposition temperature. Though the decomposition temperatures of metastable cubic Al0.7Cr0.3N phase in the range of 698–914 °C are inversely proportional to the magnitudes of deposition temperatures, the decomposition process itself starts at the same stress level of ~−4300 MPa in all three films. This phenomenon indicates that the particular compressive stress level functions as an energy threshold at which the diffusion driven formation of hexagonal Al(Cr)N phase is initiated, provided sufficient temperature is applied. In summary, the unique synchrotron experimental setup indicated that residual stresses play a decisive role in the decomposition routes of nanocrystalline transition metal nitrides.


1995 ◽  
Vol 410 ◽  
Author(s):  
Joel D. Houmes ◽  
David S. Bem ◽  
Hans-Conrad Zur Loye

ABSTRACTSeveral novel transition metal nitrides and oxynitrides were synthesized via ammonolysis of solid state oxide precursors at temperatures ranging from 700°C-900°C and reaction times ranging from 12 hours to 4 days. The products were characterized by powder X-ray diffraction and their structures were determined by powder X-ray Rietveld refinement. The relationships between the structures of these nitrides and oxynitrides, and their similarity to the structures of the transition metal dichalcogenides, is discussed.


1961 ◽  
Vol 5 ◽  
pp. 276-284
Author(s):  
E. L. Moore ◽  
J. S. Metcalf

AbstractHigh-temperature X-ray diffraction techniques were employed to study the condensation reactions which occur when sodium orthophosphates are heated to 380°C. Crystalline Na4P2O7 and an amorphous phase were formed first from an equimolar mixture of Na2HPO4·NaH2PO4 and Na2HPO4 at temperatures above 150°C. Further heating resulted in the formation of Na5P3O10-I (high-temperature form) at the expense of the crystalline Na4P4O7 and amorphous phase. Crystalline Na5P3O10-II (low-temperature form) appears after Na5P3O10-I.Conditions which affect the yield of crystalline Na4P2O7 and amorphous phase as intermediates and their effect on the yield of Na5P3O10 are also presented.


2021 ◽  
pp. 174751982098472
Author(s):  
Lalmi Khier ◽  
Lakel Abdelghani ◽  
Belahssen Okba ◽  
Djamel Maouche ◽  
Lakel Said

Kaolin M1 and M2 studied by X-ray diffraction focus on the mullite phase, which is the main phase present in both products. The Williamson–Hall and Warren–Averbach methods for determining the crystallite size and microstrains of integral breadth β are calculated by the FullProf program. The integral breadth ( β) is a mixture resulting from the microstrains and size effect, so this should be taken into account during the calculation. The Williamson–Hall chart determines whether the sample is affected by grain size or microstrain. It appears very clearly that the principal phase of the various sintered kaolins, mullite, is free from internal microstrains. It is the case of the mixtures fritted at low temperature (1200 °C) during 1 h and also the case of the mixtures of the type chamotte cooks with 1350 °C during very long times (several weeks). This result is very significant as it gives an element of explanation to a very significant quality of mullite: its mechanical resistance during uses at high temperature remains.


1996 ◽  
Vol 52 (3) ◽  
pp. 440-449 ◽  
Author(s):  
R. Hammond ◽  
J. Barbier

Sodium cobalt phosphate, NaCoPO4, occurs as two different polymorphs which transform reversibly at 998 K. The crystal structures of both polymorphs have been determined by single-crystal X-ray diffraction. The low-temperature form α-NaCoPO4 crystallizes in the space group Pnma with cell parameters: a = 8.871 (3), b = 6.780 (3), c = 5.023 (1) Å, and Z = 4 [wR(F 2) = 0.0653 for all 945 independent reflections]. The α-phase contains octahedrally coordinated Co and Na atoms and tetrahedrally coordinated P atoms, and is isostructural with maracite, NaMnPO4. The structure of high-temperature β-NaCoPO4 is hexagonal with space group P65 and cell parameters: a = 10.166 (1), c = 23.881 (5) Å, and Z = 24 [wR(F 2) = 0.0867 for 4343 unique reflections]. The β-phase belongs to the large family of stuffed tridymites, with the P and Co atoms occupying tetrahedral sites and the Na atoms located in the cavities of the tetrahedral framework. The long c axis corresponds to a 3 × superstructure of the basic tridymite framework (c ≃ 8 Å) and is caused by the displacement of the Na atoms, tetrahedral tilts and strong distortions of the CoO4 tetrahedra. A bond-valence analysis of these phases reveals that the polymorphism in NaCoPO4 is due in part to over-/underbonding of the Na atom in the low-/high-temperature structures, respectively.


2011 ◽  
Vol 84-85 ◽  
pp. 662-666 ◽  
Author(s):  
Zeng Ping Zhang ◽  
Yong Wen ◽  
Jian Zhong Pei ◽  
Shuan Fa Chen

Montmorillonite (MMT) modified asphalts are prepared by melt blending with the help of high-speed shear mixer. The dispersion of MMT layers in the asphalt matrix are characterized by X-ray diffraction (XRD). The effect of different contents of MMT on physical properties of the base asphalt is studied. These properties include penetration, softening point and ductility. The results indicate that MMT/asphalt may form a nanocomposite structure with MMT layers intercalated by the asphalt molecules. MMT can improve the high temperature performance and temperature sensitivity of the base asphalt. And it can slightly reduce the low temperature performances of matrix asphalt. It is found that low temperature performances, high temperature performance and temperature sensitivity of the modified system achieved balance when the content of MMT is 4 wt%.


1983 ◽  
Vol 24 ◽  
Author(s):  
A. T. Aldred ◽  
S.-K. Chan ◽  
M. H. Grimsditch ◽  
M. V. Nevitt

ABSTRACTThe displacive transformations in complex oxides of the type LaNb1-xVxO4 has been studied by x-ray diffraction and Raman scattering for 0 < x < 0.3. X-ray diffraction results indicate that the transformation from the tetragonal high temperature structure (C4h6) to the monoclinic low-temperature structure (C2h6) is higher than first order and that the transformation temperature Tc is depressed significantly by V substitution. Raman scattering results show that the force constant between the nearest (Nb, V)O4 tetrahedral units behave uniquely compared to others. It softens at Tc as a function of composition and it also softens as a function of temperature as Tc is approached from above.


Author(s):  
Saheed Abiola Raheem ◽  
Hangjia Shen ◽  
Tiju Thomas ◽  
Minghui Yang

Significant efforts have been directed towards the use of transition metal nitrides as electrocatalysts for hydrogen evolution reaction (HER). Molybdenum nitride, despite its promise for scalable production, suffers from the...


2014 ◽  
Vol 1655 ◽  
Author(s):  
Ashkan Salamat ◽  
Pierre Bouvier ◽  
Benjamin M. Gray ◽  
Andrew L. Hector ◽  
Simon A. J. Kimber ◽  
...  

ABSTRACTTransition metal nitrides containing metal ions in high oxidation states are a significant goal for the discovery of new families of semiconducting materials. Most metal nitride compounds prepared at high temperature and high pressure from the elements have metallic bonding. However amorphous or nanocrystalline compounds can be prepared via metal-organic chemistry routes giving rise to precursors with a high nitrogen:metal ratio. Using X-ray diffraction in parallel with high pressure laser heating in the diamond anvil cell this work highlights the possibility of retaining the composition and structure of a metastable nanocrystalline precursor under high pressure-temperature conditions. Specifically, a nanocrystalline Hf3N4 with a tetragonal defect-fluorite structure can be crystallized under high-P,T conditions. Increasing the pressure and temperature of crystallization leads to the formation of a fully recoverable orthorhombic (defect cottunite-structured) polymorph. This approach identifies a novel class of pathways to the synthesis of new crystalline nitrogen-rich transition metal nitrides.


Sign in / Sign up

Export Citation Format

Share Document