Electrochemical discharge machining of glass micro-holes with high-quality

2018 ◽  
Vol 26 (7) ◽  
pp. 1653-1660
Author(s):  
刘 勇 LIU Yong ◽  
魏志远 WEI Zhi-yuan ◽  
邓世辉 DENG Shi-hui ◽  
李松松 LI Song-song
2011 ◽  
Vol 295-297 ◽  
pp. 1794-1799 ◽  
Author(s):  
Shao Fu Huang ◽  
Di Zhu ◽  
Yong Bin Zeng ◽  
Wei Wang ◽  
Yong Liu

Electrochemical discharge machining (ECDM), based on electrochemical machining (ECM) and electrodischarge machining (EDM), is an unconventional micro-machining technology. In this paper, with the use of water, the process of micro hole on ANSI 304 stainless steel machined by micro-ECDM with high speed rotating cathode is studied. The effects of machining conditions such as the cathode rotating speed and cathode diameter on the surface quality and accuracy of the shape are investigated. The results indicate that a relatively higher electrode rotating speed can improve the machining accuracy of the micro-holes and reduce the electrodes wear.


Author(s):  
Yan Zhang ◽  
Islam Md. Rashedul ◽  
Lei Ji ◽  
Baoyang Jiang

Abstract Tube electrode high-speed electrochemical discharge machining (TSECDM) has been effectively used in the manufactures of micro holes with difficult-to-cut conductive materials in the field of aerospace industry. The design and parameters of circuit are critical for the machining performances of TSECDM. In this paper, the influences of circuit on the TSECDM performances are studied. Firstly, a relaxation type RLC generator is designed and analyzed by MATLAB simulation. Secondly, the effects of RLC circuit parameters such a resistor (R), capacitor (C) and inductor (L) on machining performances are investigated by experiments on the bulk of SS304 alloys by limiting factors changing. Finally, the analysis achievement indicated that the circuit selection parameters value R (15Ω); C (220nF); L (0.13mH) can be used to obtain a better machining performance.


Author(s):  
Manpreet Singh ◽  
Sarbjit Singh

Electrochemical discharge machining has been proved to be efficient micro-machining process and significantly used for the machining of non-conductive materials. The miniaturized products have gained advantages in Lab-on-a-chip devices and microelectromechanical system because of advancement in technology. The challenge to produce micro features has been suitably addressed by electrochemical discharge machining and emerged as potential contender in generating micro holes and micro channels on electrically non-conductive materials. This article includes state-of-art review on different domains of electrochemical discharge machining, which includes work piece, electrolyte, behaviour of tool electrode, gas film formation, machining quality along with recent hybridizations in electrochemical discharge machining process. The conclusion focuses or summarizes the future research trends for enhancement of electrochemical discharge machining efficiency and tackles problems encountered in machining.


Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 195 ◽  
Author(s):  
Yong Liu ◽  
Chao Zhang ◽  
Songsong Li ◽  
Chunsheng Guo ◽  
Zhiyuan Wei

Electrochemical discharge machining (ECDM) is one effective way to fabricate non-conductive materials, such as quartz glass and ceramics. In this paper, the mathematical model for the machining process of ECDM was established. Then, sets of experiments were carried out to investigate the machining localization of ECDM with a rotating helical tool on ultra-clear glass. This paper discusses the effects of machining parameters including pulse voltage, duty factor, pulse frequency and feed rate on the side gap under different machining methods including electrochemical discharge drilling, electrochemical discharge milling and wire ECDM with a rotary helical tool. Finally, using the optimized parameters, ECDM with a rotary helical tool was a prospective method for machining micro holes, micro channels, micro slits, three-dimensional structures and complex closed structures with above ten micrometers side gaps on ultra-clear glass.


Sign in / Sign up

Export Citation Format

Share Document