Effect of Temperature on Geometric Accuracy of AZ31 Profile during Warm Pre-Tension Rotation Bending

2011 ◽  
Vol 299-300 ◽  
pp. 432-435
Author(s):  
Han Xiao ◽  
Shi Hong Zhang ◽  
Jin Song Liu

A warm pre-tension rotation bending process is presented to bend the AZ31 profile. A 3D elastic-plastic thermo-mechanical coupled finite element model is established to investigate the effect of forming temperature on the geometric accuracy of the profile. The results indicate that with increasing forming temperature, the springback angles decrease from 8.37° to 7.2°; the bending radii decrease from 90.69 mm to 89.67 mm; the cross-section distortion of the bent profile increases.

2012 ◽  
Vol 482-484 ◽  
pp. 314-317
Author(s):  
Han Xiao ◽  
Yu Chun Dang ◽  
Shi Hong Zhang ◽  
De Hong Lu

A 3D elastic-plastic thermo-mechanical coupled finite element model of AZ31 Mg alloy profile during warm bending process was established. The effect of bending angle on the geometric accuracy of the profile was investigated. The results indicate that with increasing bending angle, the springback angles increase from 7.56° to 8.27°; the bending radii decrease from 90.15 mm to 90.01 mm; the cross-section distortion of the bent profile increases.


2011 ◽  
Vol 2 (1) ◽  
pp. 33-38 ◽  
Author(s):  
L. Lăzărescu

Abstract In this paper a 3D finite element model of the bending process for circular aluminium alloy tube has been built using the explicit code eta/Dynaform and validated by comparing the experiments. The experiments were carried out by using a hand bender with the same bending principle as a rotary draw numerical controlled (NC) bender. The relationship between quality parameters of bent tubes, in terms of cross-section distortion and wall thinning, and the angular position along the bent tube is discussed experimentally in combination with FE simulation. Then, the effects of bending radius (R) are investigated using simulation of the bending process based on the finite element model. The results show that with the increase of bending radius, the cross-section degradation factor (Ψ) and wall thinning degree (ξ) decreases rapidly.


2007 ◽  
Vol 546-549 ◽  
pp. 1591-1596
Author(s):  
Wei Feng Dong ◽  
Yong Li ◽  
Jun Xiao

As for 2.5-D layer-to-layer angle interlock braided composites, the cross section of the warp tow was represented in double-convex lens form, and the center line of the warp tow was along the sinusoid. The arranging characteristic of weft tow fibers along the cross section outline of the longitude fibers was studied in detail. A novel finite element model for 2.5-D braided composites was established to predict elastic modulus. The finite element software ANSYS was adopted to study the mechanical properties of the model and presented its stress nephogram, and the influence of the braided structure parameters on the elastic modulus of this material was analyzed in detail. To validate this model, qualified experimental samples were made by VARTM technique, and then tensile tests were performed to determine the mechanical properties. The results show that the conclusions of finite element method (FEM) fit well with the experimental values, and this model can be used to predict effectively the macro modulus of 2.5-D braided composites.


2020 ◽  
Vol 90 (17-18) ◽  
pp. 1962-1973
Author(s):  
Yinglei Lin ◽  
Yi Li ◽  
Lei Yao ◽  
Guoru Zhao ◽  
Lei Wang

Knee flexion behavior alters the contact pressure distribution exerted by compression devices during exercise. This study aimed to develop a three-dimensional dynamic finite element model of the lower limb with detailed bony structures, wearing a compression device with higher pressure over the calf, and then to quantify and compare the garment–body interface contact pressure and the cross-section pressure gradient deviation in standing and deep knee flexion postures (30°, 60°, 90°, and 120° of knee flexion). Contact pressure experiment on seven muscle points was applied to validate the model. The cross-section pressure gradient deviation was calculated on landmarks based on deviation along the four axial pathways from the average cross-section pressure gradients. In general, the results demonstrated that the whole pressure profile gradually decreased from the ankle to the thigh with higher compression on the calf in a standing position. Cross-section pressure gradient deviation resulted in a dramatic increase of ∼100% and ∼110% on positions B1 and D on the anterior of calf at 60° flexion, respectively, which resembled an M shape. This phenomenon was caused by the combination of the stretch of clothing during knee flexion, high compression over the calf, and the shape of the lower limb. This finite element model and its findings together could help us to understand the compression effects of sports lower limb devices and garments to enhance walking and running performance, and help to improve the design concepts.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Raja R. Katta ◽  
Andreas A. Polycarpou ◽  
Jorge V. Hanchi ◽  
Robert M. Crone

With the increased use of hard disk drives (HDDs) in mobile and consumer applications combined with the requirement of higher areal density, there is enhanced focus on reducing head disk spacing, and consequently there is higher susceptibility of slider/disk impact damage during HDD operation. To investigate this impact process, a dynamic elastic-plastic finite element model of a sphere (representing a slider corner) obliquely impacting a thin-film disk was created to study the effect of the slider corner radius and the impact velocity on critical contact parameters. To characterize the energy losses due to the operational shock impact damage, the coefficient of restitution for oblique elastic-plastic impact was studied using the finite element model. A modification to an existing physics-based elastic-plastic oblique impact coefficient of restitution model was proposed to accurately predict the energy losses for a rigid sphere impacting a half-space. The analytical model results compared favorably to the finite element results for the range from low impact angles (primarily normal impacts) to high impact angles (primarily tangential impacts).


Author(s):  
A. van Bael ◽  
P. van Houtte ◽  
E. Aernoudt ◽  
I. Pillinger ◽  
P. Hartley ◽  
...  

Author(s):  
Kai Jokinen ◽  
Erno Keskinen ◽  
Marko Jorkama ◽  
Wolfgang Seemann

In roll balancing the behaviour of the roll can be studied either experimentally with trial weights or, if the roll dimensions are known, analytically by forming a model of the roll to solve response to imbalance. Essential focus in roll balancing is to find the correct amount and placing for the balancing mass or masses. If this selection is done analytically the roll model used in calculations has significant effect to the balancing result. In this paper three different analytic methods are compared. In first method the mode shapes of the roll are defined piece wisely. The roll is divided in to five parts having different cross sections, two shafts, two roll ends and a shell tube of the roll. Two boundary conditions are found for both supports of the roll and four combining equations are written to the interfaces of different roll parts. Totally 20 equations are established to solve the natural frequencies and to form the mode shapes of the non-uniform roll. In second model the flexibility of shafts and the stiffness of the roll ends are added to the support stiffness as serial springs and the roll is modelled as a one flexibly supported beam having constant cross section. Finally the responses to imbalance of previous models are compared to finite element model using beam elements. Benefits and limitations of each three model are then discussed.


Sign in / Sign up

Export Citation Format

Share Document