Shear Stress Analysis of Long-Span Steel Bridge Deck Asphalt Pavement Using FEM

2011 ◽  
Vol 304 ◽  
pp. 12-17 ◽  
Author(s):  
Chun Hua Hu ◽  
Jin Qian

Asphalt pavements have been widely used to protect the steel bridge deck against moisture and provide good riding quality. However, various types of distresses especially rutting have been observed frequently in bridge deck asphalt layers. Therefore it is necessary to understand the mechanics behavior of asphalt layer in the steel bridge deck. In this paper, finite element model for bridge deck with asphalt layers have been setup. Then shear stresses have been analyzed in the various cases using finite element method. The results show that the most disadvantage position locates above the diaphragm plate outer side. The shear stress between layers decreases with the increase of the asphalt layer thickness, the peak shear stress increases either. The thin surface layer has its advantage with the requirement of the minimum paving thickness if bonding properly. Comparison with the common pavement structure, the maximum shear stress in the bridge deck pavement could be affected by the type of loading more significant.

1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


2013 ◽  
Vol 663 ◽  
pp. 49-54
Author(s):  
Xin Huang ◽  
Z.Z. Bai ◽  
De Wei Chen

In order to find the distribution rules on the shear nails on the steel-concrete composite segment of arch foot of an oblique cross steel box arch bridge, it established a space finite element model through the engineering of Wenzhou Weiwulu oblique cross steel box arch bridge, analyzing the maximum shear stress of the shear nails under normal using stage. The result shows that the welding nails in different position have a great difference in their shear stress. The welding nails which welded in a place that has a greater stiffness bear a bigger shear stress. So their mechanical performance of steel-concrete segment is better. In addition, the maximum shear stress becomes bigger from the bottom up to the top of the steel box.


2011 ◽  
Vol 368-373 ◽  
pp. 289-292
Author(s):  
San Qiang Yang ◽  
Pei Wen Hao ◽  
Li Qun Tang ◽  
Tao Liu

This epoxy asphalt used by the U.S., Japan Epoxy Asphalt two steel bridge deck pavement materials at different thickness analysis of pavement deformation force. Pavement derived the maximum tensile stress, shear stress and elastic modulus, pavement thickness of mathematical models. The results showed that: Pavement maximum tensile stress, shear stress, pavement elastic modulus with available four times a polynomial equation fitted, pavement surface transverse maximum stress increases as the pavement thickness decreases, horizontal maximum shear stress between layers does not increase with the pavement thickness decreases, but the thickness of the pavement at 40-50mm have a peak, then gradually increases with the thickness decreases.


2012 ◽  
Vol 178-181 ◽  
pp. 1601-1604
Author(s):  
Lian Yu Wei ◽  
Fei Gao ◽  
Shi Bin Ma ◽  
Qing Zhou Wang

Based on the overhaul structure of actual asphalt pavement, establishes the finite element model and analyses the shear stress in the state of overload, longitudinal slope and contact coefficient. The result is that the load and the gradient of longitudinal slope larger, the influence of rutting more seriously. The growth of shear stress is larger which brought by adding load on steep longitudinal slope than that of adding on longitudinal slope. The contact coefficient of interlayer α larger the maximum shear stress larger, on the contrary, the contact coefficient of interlayer α smaller the maximum shear stress smaller.


2005 ◽  
Vol 3 (7) ◽  
pp. 255-262 ◽  
Author(s):  
Jehad Al-Sukhun ◽  
Christian Lindqvist ◽  
Risto Kontio

The purpose of this study was to develop a three-dimensional finite-element model (FEM) of the human orbit, containing the globe, to predict orbital deformation in subjects following a blunt injury. This study investigated the hypothesis that such deformation could be modelled using finite-element techniques. One patient who had CT-scan examination to the maxillofacial skeleton including the orbits, as part of her treatment, was selected for this study. A FEM of one of the orbits containing the globe was constructed, based on CT-scan images. Simulations were performed with a computer using the finite-element software NISA (EMRC, Troy, USA). The orbit was subjected to a blunt injury of a 0.5 kg missile with 30 m s −1 velocity. The FEM was then used to predict principal and shear stresses or strains at each node position. Two types of orbital deformation were predicted during different impact simulations: (i) horizontal distortion and (ii) rotational distortion. Stress values ranged from 213.4 to 363.3 MPa for the maximum principal stress, from −327.8 to −653.1 MPa for the minimum principal stress, and from 212.3 to 444.3 MPa for the maximum shear stress. This is the first finite-element study, which demonstrates different and concurrent patterns of orbital deformation in a subject following a blunt injury. Finite element modelling is a powerful and invaluable tool to study the multifaceted phenomenon of orbital deformation.


2021 ◽  
Vol 15 (57) ◽  
pp. 160-168
Author(s):  
Ismail Boudjemaa ◽  
A. Sahli ◽  
A. Benkhettou ◽  
S. Benbarek

A lot of trans-femoral amputation patients experience skin breakdown due to the pressures and shear stresses in the stump-prosthesis interface. In this study, a finite element model was employed to investigate the stresses at the stump interface in the case of an orthopedic implant fixed to the cut end of the femur. By changing the stiffness of this implant, we aim to see how the stiffness of this implant affects the stresses in the interface between the amputated limb and the prosthesis. To find out the effects of implant stiffness, five values for the elastic modulus, ranging from 0.1 to 0.5 Mpa, with an interval of 0.1 Mpa were employed in the implant structure of the FE model. Obtained results show that the implant played important role in reducing the stresses at the stump-prosthesis interface where the contact pressure did not exceed 53 Kpa and 17.3 Kpa for shear stress in the stiffer case of an implant, while the contact pressure in the case of femur without implant exceeded 79Kpa and 42 Kpa for shear stress. We also noted that the intensity of the contact pressure and the shear stress is proportional to the stiffness of the implant, as the greater the implant stiffness, the higher the peak of these stresses.


2016 ◽  
Vol 835 ◽  
pp. 649-653
Author(s):  
Yuan Yuan Ding ◽  
Shi Long Wang ◽  
Zhi Jun Zheng ◽  
Li Ming Yang ◽  
Ji Lin Yu

A 3D cell-based finite element model is employed to investigate the dynamic biaxial behavior of cellular materials under combined shear-compression. The biaxial behavior is characterized by the normal stress and shear stress, which could be determined directly from the finite element results. A crush plateau stress is introduced to illustrate the critical crush stress, and the result shows that the normal plateau stress declines with the increase of the shear plateau stress, which climbs with the increase of loading angle. An elliptical criterion of normal plateau stress vs. shear plateau stress is obtained by the nonlinear regression method.


1985 ◽  
Vol 52 (4) ◽  
pp. 801-805 ◽  
Author(s):  
P. R. Heyliger ◽  
J. N. Reddy

A quasi-three dimensional elasticity formulation and associated finite element model for the stress analysis of symmetric laminates with free-edge cap reinforcement are described. Numerical results are presented to show the effect of the reinforcement on the reduction of free-edge stresses. It is observed that the interlaminar normal stresses are reduced considerably more than the interlaminar shear stresses due to the free-edge reinforcement.


2013 ◽  
Vol 184 (4-5) ◽  
pp. 299-306 ◽  
Author(s):  
Richard J. Lisle

AbstractThe assumption is widely made that slip on faults occurs in the direction of maximum resolved shear stress, an assumption known as the Wallace-Bott hypothesis. This assumption is used to theoretically predict slip directions from known in situ stresses, and also as the basis of palaeostress inversion from fault-slip data. This paper examines different situations in relation to the appropriateness of this assumption. Firstly, it is shown that the magnitude of the shear stress resolved within a plane is a function with a poorly defined maximum direction, so that shear stress values greater than 90% of the maximum occur within a wide angular range (± 26°) degrees. The situation of simultaneous movement on pairs of faults requires slip on each fault to be parallel to their mutual line of intersection. However, the resolved shear stresses arising from a homogeneous state of stress do not accord with such a slip arrangement except in the case of pairs of perpendicular faults. Where fault surfaces are non-planar, the directions of resolved shear stress in general give, according to the Wallace-Bott hypothesis, a set of slip directions of rigid fault blocks, which is generally kinematically incompatible. Finally, a simple model of a corrugated fault suggests that any anisotropy of the shear strength of the fault such as that arising from fault surface topography, can lead to a significant angular difference between the directions of maximum shear stress and the slip direction.These findings have relevance to the design of procedures used to estimate palaeostresses and the amount of data required for this type of analysis.


2011 ◽  
Vol 480-481 ◽  
pp. 1496-1501
Author(s):  
Liu Hui

In order to study the dynamic characteristics of a super-long-span cable-stayed bridge which is semi-floating system, the spatial finite element model of this cable-stayed bridge was established in ANSYS based on the finite element theory.Modal solution was conducted using subspace iteration method, and natural frequencies and vibration modes were obtained.The dynamic characteristics of this super-long-span cable-stayed bridge were then analyzed.Results showed that the super-long-span cable-stayed bridge of semi-floating system has long basic cycle, low natural frequencies, dense modes and intercoupling vibration modes.


Sign in / Sign up

Export Citation Format

Share Document