Experimental Research on Beneficiation Process for a Specularite Ore

2011 ◽  
Vol 304 ◽  
pp. 387-390 ◽  
Author(s):  
Wei Zhi Wang ◽  
Jin Rui Zhang ◽  
Chun Guang Yang

An iron ore contains specularite and hematite which are its main iron minerals. And its main gangue minerals are specularite, part of the clay material and a small amount of quartz.Tests are made on the ore by adopting processes including gravity separation, high intensity magnetic separation, high intensity magnetic-gravity separation and high intensity magnetic - reverse flotation. The test results show that the separation process of high intensity magnetic-reverse flotation can obtain an iron concentrate grading about 66.62% at a recovery of 58.38% from an iron ore assaying around 35.00% iron, rather good metallurgical performances.

2013 ◽  
Vol 295-298 ◽  
pp. 3080-3084
Author(s):  
Su Juan Yuan ◽  
Zhi Yong Shen ◽  
Da Yong Zhang

It was determined through a large amount of beneficiation test to adopt stage grinding-low intensity magnetic separation-high intensity magnetic separation-reverse flotation as the principle beneficiation flowsheet for a certain hematite in Hebei. The test results indicate that we can get iron concentrate with a grade of iron 65.19% and a recovery of iron 63.17% respectively at iron concentrate 21.90%, the primary grinding of 67.54%-200 mesh and secondary grinding of 97.70%-200 mesh.


2011 ◽  
Vol 304 ◽  
pp. 391-394
Author(s):  
Wei Zhi Wang ◽  
Jin Rui Zhang ◽  
Chun Guang Yang

An iron ore contains specularite and hematite which are its main iron minerals and carbonates such as calcite which are its main gangue minerals. The ore is very apt to produce slime in the grinding process,leading to a deteriorated beneficiability. The rough iron concentrate can be obtained by using high gradient magnetic separator to discard tailings with the grinding fineness of 95% -0.074mm. Then the rough concentrate is treated by reverse flotation to produce a final concentrate with the operation recovery of 66.49% and the iron grade of 66.12%,and the total recovery of iron could reach58.70%.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2177-2188
Author(s):  
Wen Li Jiang ◽  
Yi Min Zhang ◽  
Guang Quan Liang ◽  
Xi Wen Xia

In order to enhance the quality of iron concentrate from magnetic separation, reverse-flotation technology is often applied in iron ore dressing plant. However, this technology has disadvantages in operating cost, energy consumption and environmental protection (Zhao Chunfu, Wu Jianghua &Wang Hui ,2005). Developing innovative equipment to process magnetite ore more-effectively is a way to get rid of these disadvantages of reverse flotation and improve the quality of iron concentrate. This paper describes the development of Complex Flashing-Field Magnetic Cleaner, a new kind of equipment based on the principle of combination of separation in magnetic field and separation in gravity field (Hao Shuhua & Jiang Wenli,2002). This innovative equipment possesses a tailor-made magnetic system and has the characteristics of a magnetic field which can strengthen the formation of magnetic agglomerations and the dispersion of gangue minerals to improve the quality of separation. The automatic control system developed specifically for this equipment can further increase the accuracy of separation and stabilize the process. Test results showed that this equipment is reliable in operation, economically beneficial and it has large potential of application.


2013 ◽  
Vol 753-755 ◽  
pp. 24-27 ◽  
Author(s):  
Shu Xian Liu ◽  
Jin Xia Zhang ◽  
Miao Chen ◽  
Zhi Shuai Xu

In order to better exploit and utilize the oolitic hematite ore resource in Zhangjiakou region, staged grinding-separation process consisting of high intensity magnetic separation(HIMS) and reverse floatation was adopted in the beneficiation test on the regionally representative oolitic hematite ore of Longyan Iron Mine, Xuan Stee1. The test results indicate that,with Slong pulsating high gradient magnetic separation as HIMS equipment,with NaOH,starch,CaO and TS as flotation reagents,and at a grind of 65% -200 mesh for the primary grinding and 95%-200 mesh for the secondary grinding,an iron concentrate grading 62.34% and having an iron recovery of 53.07% can be achieved after two stage HIMS and one roughing—one cleaning reverse flotation.


2015 ◽  
Vol 1089 ◽  
pp. 70-75
Author(s):  
Bing Deng ◽  
Yuan Zhang ◽  
Qin Zhang ◽  
Zhi Yong Sun

The condition tests on the metallic roasting process and the magnetic separation process for the Exi oolitic hematite, are discussed. The results demonstrate that the oolitic hematite is roasted best with excess coal as reductant at the temperature of 1050°C for 3 hours, and a iron concentrate with the grade of 94%, the metallization rate of 95% and the recovery of 88% is obtained through permanent magnet roughing of coarse grains and magnetic media desliming after grinding.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 563
Author(s):  
Junhui Xiao ◽  
Kai Zou ◽  
Tao Chen ◽  
Wenliang Xiong ◽  
Bing Deng

In this research, the coarse manganese concentrate was collected from a manganese ore concentrator in Tongren of China, and the contents of manganese and iron in coarse manganese concentrate were 28.63% and 18.65%, respectively. The majority of the minerals in coarse manganese concentrate occur in rhodochrosite, limonite, quartz, olivine, etc. Calcium chloride, calcium hypochlorite, coke, and coarse manganese concentrate were placed in a roasting furnace to conduct segregation roasting, which resulted in a partial chlorination reaction of iron to produce FeCl3, ferric chloride reduced to metallic iron and adsorbed onto the coke, and rhodochrosite broken down into manganese oxide. Iron was extracted from the roasted ore using low-intensity magnetic separation, and manganese was further extracted from the low-intensity magnetic separation tailings by high-intensity magnetic separation. The test results showed that iron concentrate with an iron grade of 78.63% and iron recovery of 83.60%, and manganese concentrate with a manganese grade of 54.04% and manganese recovery of 94.82% were obtained under the following optimal conditions: roasting temperature of 1273 K, roasting time of 60 min, calcium chloride dosage of 10%, calcium hypochlorite dosage of 5%, coke dosage of 10%, coke size of −1 mm, grinding fineness of −0.06 mm occupying 90%, low-intensity magnetic field intensity of 0.14 T, and high-intensity magnetic field intensity of 0.65 T. Most minerals in the iron concentrate were Fe, Fe3O4, and a small amount of SiO2 and CaSiO3; the main minerals in the manganese were MnO, and a small amount of Fe3O4, SiO2, and CaSiO3. The thermodynamic calculation results are in good agreement with the test results.


2011 ◽  
Vol 189-193 ◽  
pp. 1722-1725 ◽  
Author(s):  
Jin Xia Zhang ◽  
Fu Sheng Niu ◽  
Shu Xian Liu ◽  
Yi Miao Nie

Based on the study on the characteristics of a limonite ore, research was made on single reverse flotation for Xinjiang limonite ore. The test results indicate that we can obtain an iron concentrate grading about 54.07% at a recovery of 62.65% from an iron ore assaying around 41.85% iron,rather good metallurgical performances.


2012 ◽  
Vol 550-553 ◽  
pp. 2831-2834
Author(s):  
Wei Zhi Wang ◽  
Qing Mei Jia ◽  
Chun Guang Yang

The mineral processing experimental research was carried out on a high mud content lean hematite. The results showed that using the technological flowsheet of “stage grinding- low intensity magnetic separation for obtaining concentrate - high-intensity magnetic separation for discarding tailings-gravity separation(shaking table)”,a final iron concentrate with TFe grade of 65.89% ,yield of 19.35% and iron recovery of 52.32% from the raw ores with TFe grade of 24.07% was obtained, with the first stage grinding size being 50% -200 mesh and the second stage,95% -200 mesh.


Sign in / Sign up

Export Citation Format

Share Document