Influence Regularities of Axial Force of Cross Wedge Rolling Symmetric Shaft-Parts about Technical Parameters

2011 ◽  
Vol 314-316 ◽  
pp. 589-593 ◽  
Author(s):  
Xue Dao Shu ◽  
Bao Shou Sun ◽  
Min Xiao

Because of unbalanced axial force of cross wedge rolling asymmetric shaft-parts causing the rolling play and not stably, it is key factors to restrict application in asymmetric shaft-parts of cross wedge rolling. Axial force balance depends on technical parameters. So the influence regularities of axial force to technical parameters is researched in this paper by Ansys-Ls/Dyna finite element software. Finite element model is authenticated by experiment of rolling force, and the influence regularities of axial force of cross wedge rolling asymmetric shaft-parts is get. It will provide a theoretical basis for choosing reasonable parameters in mold design of cross wedge rolling asymmetric shaft-parts.

2012 ◽  
Vol 271-272 ◽  
pp. 406-411 ◽  
Author(s):  
Wen Yu Ma ◽  
Bao Yu Wang ◽  
Jing Zhou ◽  
Qiao Yun Li

The aim of this paper is to determine whether the train axle cross wedge rolling(CWR) using square billet as blank is available or not. Based on numerical simulation software DEFORM-3D, we built the finite element model. And the whole forming process was simulated successfully. The stress and strain distributions of workpiece in the process were analyzed. The effect of forming angle, stretching angle and billet size on rolling force was investigated, then determined the proper process parameters. The differences between the round billet rolling and the square billet rolling were obtained by comparing the tangential, axial and radial forces during the rolling process. The studied results show the availability of using square billet as blank in train axle CWR and provide important realistic meaning and application value.


2011 ◽  
Vol 230-232 ◽  
pp. 384-388 ◽  
Author(s):  
Ning Zhang ◽  
Bao Yu Wang ◽  
Zheng Huan Hu

The metal microstructure of a product formed by cross wedge rolling (CWR) has much effect on the comprehensive properties of the final product. The microstructure model of GH4169 alloy was programmed into the rigid-plastic finite element software DEFORM-3D by the secondary development in this paper, so the microstructure evolution during the CWR process can be simulated. The finite element model (FEM) that coupled deformation, heat transfer and microstructure evolution was established. Based on the model, the evolution of microstructure of GH4169 alloy in the process of CWR was realized with the simulation. The strain, strain rate, temperature and the distribution of grain size of the part were obtained in the whole process of CWR. The simulation results show that the dynamic recrystallization is the main grain refinement mechanism for the CWR process and the grain refining effect of the workpiece during the CWR process is remarkably.


2011 ◽  
Vol 230-232 ◽  
pp. 352-356
Author(s):  
Wen Ke Liu ◽  
Kang Sheng Zhang ◽  
Zheng Huan Hu

Based on the rigid-plastic deformation finite element method and the heat transfer theories, the forming process of cross wedge rolling was simulated with the finite element software DEFORM-3D. The temperature field of the rolled piece during the forming process was analyzed. The results show that the temperature gradient in the outer of the work-piece is sometimes very large and temperature near the contact deformation zone is the lowest while temperature near the center of the rolled-piece keeps relatively stable and even rises slightly. Research results provide a basis for further study on metal flow and accurate shaping of work-piece during cross wedge rolling.


2021 ◽  
pp. 1-24
Author(s):  
Hamidreza Mahdavi ◽  
Konstantinos Poulios ◽  
Christian F. Niordson

Abstract This work evaluates and revisits elements from the depth-sensing indentation literature by means of carefully chosen practical indentation cases, simulated numerically and compared to experiments. The aim is to close a series of debated subjects, which constitute major sources of inaccuracies in the evaluation of depth-sensing indentation data in practice. Firstly, own examples and references from the literature are presented in order to demonstrate how crucial self-similarity detection and blunting distance compensation are, for establishing a rigorous link between experiments and simple sharp-indenter models. Moreover, it is demonstrated, once again, in terms of clear and practical examples, that no more than two parameters are necessary to achieve an excellent match between a sharp indenter finite element simulation and experimental force-displacement data. The clear conclusion is that reverse analysis methods promising to deliver a set of three unique material parameters from depth-sensing indentation cannot be reliable. Lastly, in light of the broad availability of modern finite element software, we also suggest to avoid the rigid indenter approximation, as it is shown to lead to unnecessary inaccuracies. All conclusions from the critical literature review performed lead to a new semi-analytical reverse analysis method, based on available dimensionless functions from the literature and a calibration against case specific finite element simulations. Implementations of the finite element model employed are released as supplementary material, for two major finite element software packages.


2017 ◽  
Vol 730 ◽  
pp. 548-553
Author(s):  
Jing Ge ◽  
Hao Jiang ◽  
Zhen Yu Sun ◽  
Guo Jun Yu ◽  
Bo Su ◽  
...  

In this paper, we establish the mechanical property analysis of Single-walled Carbon Nanotubes (SWCNTs) modified beam element model based on the molecular structural mechanics method. Then we study the mechanical properties of their radial direction characteristics using the finite element software Abaqus. The model simulated the different bending stiffness with rectangular section beam elements C-C chemical force field. When the graphene curled into arbitrary chirality of SWCNTs spatial structure, the adjacent beam position will change the moment of inertia of the section of the beam. Compared with the original beam element model and the calculation results, we found that the established model largely reduced the overestimate of the original model of mechanical properties on the radial direction of the SWCNTs. At the same time, compared with other methods available in the literature results and the experimental data, the results can be in good agreement.


2018 ◽  
Vol 29 (16) ◽  
pp. 3188-3198 ◽  
Author(s):  
Wissem Elkhal Letaief ◽  
Aroua Fathallah ◽  
Tarek Hassine ◽  
Fehmi Gamaoun

Thanks to its greater flexibility and biocompatibility with human tissue, superelastic NiTi alloys have taken an important part in the market of orthodontic wires. However, wire fractures and superelasticity losses are notified after a few months from being fixed in the teeth. This behavior is due to the hydrogen presence in the oral cavity, which brittles the NiTi arch wire. In this article, a diffusion-mechanical coupled model is presented while considering the hydrogen influences on the NiTi superelasticity. The model is integrated in ABAQUS finite element software via a UMAT subroutine. Additionally, a finite element model of a deflected orthodontic NiTi wire within three teeth brackets is simulated in the presence of hydrogen. The numerical results demonstrate that the force applied to the tooth drops with respect to the increase in the hydrogen amount. This behavior is attributed to the expansion of the NiTi structure after absorbing hydrogen. In addition, it is shown that hydrogen induces a loss of superelasticity. Hence, it attenuates the role of the orthodontic wire on the correction tooth malposition.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaxiang Li ◽  
Biao Wang ◽  
Jian Sun ◽  
Shuhong Wang ◽  
Xiaohong Zhang ◽  
...  

Ice shedding causes transmission lines to vibrate violently, which induces a sharp increase in the longitudinal unbalanced tension of the lines, even resulting in the progressive collapse of transmission towers in serious cases, which is a common ice-based disaster for transmission tower-line systems. Based on the actual engineering characteristics of a 500 kV transmission line taken as the research object, a finite element model of a two-tower, three-line system is established by commercial ANSYS finite element software. In the modeling process, the uniform mode method is used to introduce the initial defects, and the collapse caused by ice shedding and its influencing parameters are systematically studied. The results show that the higher the ice-shedding height is, the greater the threat of ice shedding to the system; furthermore, the greater the span is, the shorter the insulator length and the greater the dynamic response of the line; the impact of ice shedding should be considered in the design of transmission towers.


2017 ◽  
Vol 11 (1) ◽  
pp. 1026-1035 ◽  
Author(s):  
Ahmad Basshofi Habieb ◽  
Gabriele Milani ◽  
Tavio Tavio ◽  
Federico Milani

Introduction:An advanced Finite Element model is presented to examine the performance of a low-cost friction based-isolation system in reducing the seismic vulnerability of low-class rural housings. This study, which is mainly numerical, adopts as benchmark an experimental investigation on a single story masonry system eventually isolated at the base and tested on a shaking table in India.Methods:Four friction isolation interfaces, namely, marble-marble, marble-high-density polyethylene, marble-rubber sheet, and marble-geosynthetic were involved. Those interfaces differ for the friction coefficient, which was experimentally obtained through the aforementioned research. The FE model adopted here is based on a macroscopic approach for masonry, which is assumed as an isotropic material exhibiting damage and softening. The Concrete damage plasticity (CDP) model, that is available in standard package of ABAQUS finite element software, is used to determine the non-linear behavior of the house under non-linear dynamic excitation.Results and Conclusion:The results of FE analyses show that the utilization of friction isolation systems could much decrease the acceleration response at roof level, with a very good agreement with the experimental data. It is also found that systems with marble-marble and marble-geosynthetic interfaces reduce the roof acceleration up to 50% comparing to the system without isolation. Another interesting result is that there was little damage appearing in systems with frictional isolation during numerical simulations. Meanwhile, a severe state of damage was clearly visible for the system without isolation.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Hua-feng Shan ◽  
Shao-heng He ◽  
Yu-hua Lu ◽  
Wei-jian Jiang

Excavation beneath existing buildings may cause the superstructure to tilt and crack, which seriously affects the normal use of the superstructure. Due to the new working conditions of excavation beneath existing buildings, related case reports are rare and limited. In the case of No. 3 section basement construction project of Ganshuixiang, we monitored the excavation construction by burying test instruments at the designated location. Afterwards, Plaxis 3D finite element software was used to establish an underpinning pile-cap-excavation model, which can analyze the influence of different pile cutting sequences on the bearing behavior of new basement structural pillars. By comparing the in situ measurement data with the finite element model, it can be concluded that when the excavation depth rises, the axial force of the underpinning pile gradually increases, and the pile skin friction is slowly exerted from top to bottom. Different cutting sequences will influence the bearing behavior of the structural pillar. Moreover, the pile cutting process also significantly impacts its bearing behavior and the settlement behavior of the superstructure. Compared with the clockwise pile cutting sequence, the symmetrical pile cutting is more advantageous. In the whole process of the storey adding and reconstruction, the superstructure settlement is related to the working condition of digging and adding layers. In the stage from soil excavation to the concrete curing period of the structural pillar, it increases slowly with time and tends to be stable in the concrete curing period. However, in the pile cutting stage, the superstructure settlement increases sharply, and after pile cutting, it becomes stable.


2011 ◽  
Vol 291-294 ◽  
pp. 3282-3286 ◽  
Author(s):  
Jiang Wei Wu ◽  
Peng Wang

In port crane industry, the surface hardening technique is widely used in order to improve the strength of wheel. But the hardening depth is chosen only by according to the experience, and the effect of different hardened depths is not studied theoretically. In this paper, the contact stresses in wheel with different hardening depth have been analyzed by applying three-dimensional finite element model. Based on this model, the ANSYS10.0 finite element software is used. The elastic wheel is used to verify the numerical results with the Hertz’s theory. Three different hardening depths, namely 10mm, 25mm and whole hardened wheel, under three different vertical loads were applied. The effect of hardening depth of a surface hardened wheel is discussed by comparing the contact stresses and contact areas from the numerical results.


Sign in / Sign up

Export Citation Format

Share Document