Study on the Novel Label Free Impedimetric Immunosensor for Aflatoxin B1 Based on Poly(o-phenylenediamine) Film Modified Gold Electrode

2011 ◽  
Vol 322 ◽  
pp. 385-389 ◽  
Author(s):  
Ning Ning Wu ◽  
Li Xin Cao ◽  
Pei Sheng Yan ◽  
Ming Hao Wang

A label free impedimetric immunosensor for the determination of aflatoxin B1 (AFB1) was fabricated by immobilizing anti-AFB1 onto Poly o-phenylenediamine (PoPD) electropolymerized film modified gold electrode by glutaraldehyde (GA) cross-linking. An electrochemical interfacial modeling of biomolecular recognition was recommended and reasonably interpreted. EIS technology was employed for the quantitative determination. The linear detection concentration ranges of AFB1 were 0.03~0.1 μg/mL and 0.1~0.7 μg/mL. The detection limit was 2.8×10-8μg/mL. The immunosensor could be reused more than 10 times when renewed by HCl-Glycine buffer solution (pH 2.6).

2019 ◽  
Vol 11 (30) ◽  
pp. 3866-3873 ◽  
Author(s):  
R. Karthikeyan ◽  
D. James Nelson ◽  
S. Abraham John

Selective and sensitive determination of one of the purine nucleotides, inosine (INO) using a low cost carbon dot (CD) modified glassy carbon (GC) electrode in 0.2 M phosphate buffer solution (pH 7.2) was demonstrated in this paper.


Author(s):  
Hyuk-Mi Lee ◽  
Hwan-Goo Kang

AbstractTo develop a new simple and simultaneous purification method for mycotoxins in feeds and grains, magnetic nanoparticles (MNPs) conjugated with monoclonal antibodies (mAbs) against mycotoxins were used to separate aflatoxin B1 (AFB1), zearalenone (ZEA) and deoxynivalenol (DON). For a single spike of each mycotoxin into the buffer solution (16% MeOH in PBS), mean recoveries were 93.1–95.0% for AFB1 (5–20 ng/mL spiked), 87.2–96.0% for ZEA (125–500 ng/mL spiked) and 75.2–96.9% for DON (250–1,000 ng/mL spiked) by HPLC and ELISA. Recoveries of AFB1 (20 ng/mL) and ZEA (500 ng/mL) simultaneously spiked into the buffer solution were 87.0 and 99.8%, respectively. Recovery rates of AFB1/DON and DON/ZEA spiked simultaneously were 86.2%/76.6% and 92.0%/86.7%, respectively, at concentrations of 20 ng/mL AFB1, 500 ng/mL ZEA, and 1,000 ng/mL DON. Recoveries using the novel mAb–MNP conjugated system in a buffer solution simultaneously spiked with AFB1, ZEA and DON were 82.5, 94.6 and 73.4%, respectively. Recoveries of DON in animal feed were 107.7–132.5% at concentrations of 250–1,000 ng/g spiked in feed. The immunoaffinity chromatography (IAC) clean-up method was compared with the purification method using novel mAb–MNP. After fortification of animal feed with AFB1 (5, 10 and 20 ng/g feed) and ZEA (125, 250 and 500 ng/g feed), AFB1 and ZEA were purified using both the methods. In the case of the novel mAb-MNP conjugated system, mean recoveries for AFB1 were 89.4, 73.1 and 88.3% at concentrations of 5, 10 and 20 ng/g feed, respectively. For ZEA, mean recoveries were 86.7, 85.9 and 79.1% at concentrations of 125, 250 and 500 ng/g, respectively. For IAC purification, recoveries were 42.9–45.1% for AFB1 and 96.8–103.2% for ZEA. In conclusion, the present purification method using monoclonal antibodies conjugated to MNPs can be used for simple and simultaneous purification of mycotoxins from feed and maize.


2009 ◽  
Vol 6 (s1) ◽  
pp. S496-S500
Author(s):  
K. S. Parikh ◽  
R. M. Patel ◽  
K. N. Patel

The reagent 2-hydroxy-4-n-butoxy-5-bromopropiophenone thiosemicarbazone (HBBrPT) has been used for the determination of Cd(II) by using spectrophotometric method. The reagent HBBrPT gave an intense yellow colour with Cd(II) solution in basic medium. The maximum absorbance was observed at 440 nm, in basic buffer solution (pH 10.00). The molor absorptivity and Sandell’s sensitivity of Cd(II)-HBBrPT complex were 4035 mol-1cm-1and 0.02765 μg cm-2respectively. The stability constant of 1:2 Cd(II)-HBBrPT complex was 8.46×106. The effect of various iron was also studied.


2015 ◽  
Vol 15 (3) ◽  
pp. 226-233 ◽  
Author(s):  
Fitriyana Fitriyana ◽  
Fredy Kurniawan

Sucrose sensor has been made by deposited the active materials on the surface of gold electrode. The active materials, i.e. polyaniline (PANI), invertase and gold nanoparticles, were deposited step by step. Aniline polymerization were conducted electrochemically at potential -500 to 1000 mV using voltammetry method with sweep rate 50 mV/s for 20 cycles in HCl solution pH 1.5. The modified electrode obtained was immersed in invertase 1 M phosphate buffer solution pH 6. The invertase trapping in polyaniline was performed using the same condition as aniline polymerization. Then, gold nanoparticles were deposited on the polyaniline-invertase modified gold electrode using Layer by Layer (LbL) technique. The polyaniline-invertase-gold nanoparticles modified gold electrode obtained was used to measure sucrose solution. Electrochemical signal of polyaniline (PANI)-invertase-gold nanoparticles modified gold electrode is increase with sucrose concentration. The sensitivity and detection limit of the electrode are 0.4657 µA mm-2 mM-1 and 9 µM, respectively. No electrochemical interference signals from fructose and glucose have been observed in the sucrose measurement.


2021 ◽  
Vol 87 (2) ◽  
pp. 19-24
Author(s):  
E. V. Turusova

A rapid method for the determination of Dibazol (bendazol hydrochloride) in liquid and solid dosage forms (DF) has been developed. The method is based on converting the drug into an analytical form and titrating the physiologically active compound (PAC) with a solution of photogenerated iodine obtained by irradiation of an auxiliary solution containing potassium iodide, a mixture of sensitizers (sodium eosinate: fluorescein: auramine, taken in a molar ratio of 1:1:1) and an acetate buffer solution (pH 5.6). A decrease in the titrant content in the cell due to interaction with Dibazol was recorded by a decrease in the current in the amperometric circuit. Stabilization of the current in the circuit indicated the completeness of the reaction, thus providing for estimation of the PAC content in a DF. Further irradiation of the solution and measurement of the generation time required to replenish the titrant loss in the cell also ensure the quantitative estimation of the PAC content in the preparation. The method has been tested on solid dosage form and sterile solutions of Dibazol intended for intramuscular and intravenous administration. A slight effect of stabilizers (hydrochloric acid, ethanol) and auxiliary substances (potato starch) present in the DF on the photogeneration of the titrant was observed. The determined Dibazol content in solid and liquid DF falls within the range recommended by the order of the Ministry of Health of the Russian Federation (26.10.2015 No. 751n) and OFS.1.4.2.0009.15, which indicates that the quality of the drug meets the GMP standards. The linear dependence of the analytical signal on the Dibazol concentration is observed in the range of 13.5 – 134.7 mg for the drug «Dibazol-UBF, tablets, 20 mg». The calculated limits of Dibazol detection and quantitative determination by changes in the current strength and generation time are (4.71; 3.56) and (14.26; 10.77) mg, respectively. The use of developed technique in the analysis of drugs containing Dibazol reduces both the time of single determination due to the absence of the need for standardization of solutions, and the cost of a single analysis, since it does not require the use of expensive equipment and reagents.


2015 ◽  
Vol 7 (20) ◽  
pp. 8673-8682 ◽  
Author(s):  
Nagaraj P. Shetti ◽  
Shweta J. Malode ◽  
Sharanappa T. Nandibewoor

Gold electrode was used for the oxidation of captopril in phosphate buffer solution pH 3.6 to study the influence of several physico-chemical parameters like potential, scan rate, pH and concentration by cyclic, linear sweep and differential pulse voltammetry.


2012 ◽  
Vol 600 ◽  
pp. 238-241
Author(s):  
Xiao Ling Qiang ◽  
Jian Fei Xia ◽  
Zong Hua Wang ◽  
Yan Zhi Xia ◽  
Fei Fei Zhang ◽  
...  

Copper (Cu) nanoparticles have been electrochemically deposited onto the glassy carbon electrode (GCE) surface by potentiostatic deposition method and then carbon nanotubes (CNTs) was dropped on the nano-Cu modified electrode surface to get a CNTs/nano-Cu/GCE electrode. The CNTs/nano-Cu/GCE has shown much higher electrocatalytic activity than the CNTs/GCE towards the oxidation of dopamine (DA) and uric acid (UA) in a phosphate buffer solution (pH 6.9). It can be applied to determine DA and UA with satisfactory results.


2018 ◽  
Vol 34 (2) ◽  
pp. 67
Author(s):  
Orlando Fatibello-Filho ◽  
Heberth Juliano Vieira

A spectrophotometric flow injection method for the determination of Zn(II) in ophthalmic formulations was developed. In this work, Zn(II) ion was complexed with Alizarin red S in borate buffer solution (pH 9.0) and the chromophore produced was monitored at 520 nm. The analytical curve was linear in the Zn(II) concentration range from 6.05 x 10-6 to 1.50 x 10-4 mol L-1 with a detection limit of 3.60 x 10-6 mol L-1. Recoveries ranged from 96.3 to 105 % and a relative standard deviation of 1.2 % (n = 10) for 5.5x10-5 mol L-1 Zn(II) reference solution were obtained. The sampling rate was 60 h-1 and the results obtained of Zn(II) in ophthalmic products using this procedure are in close agreement with those obtained using a comparative spectrophotometric procedure at 95 % confidence level.


2014 ◽  
Vol 6 (1) ◽  
pp. 919-935
Author(s):  
K. Jindo ◽  
K. Matsumoto ◽  
C. García Izquierdo ◽  
T. Sonoki ◽  
M. A. Sanchez-Monedero

Abstract. Biochar application has received increasing attention as a means to trap recalcitrant carbon and enhance soil fertility. Hydrolytic enzymatic assays, such as β-glucosidase and phosphatase activities, are used for the assessment of soil quality and composting process, which are based on use of p-nitrophenol (PNP) derivatives as substrate. However, sorption capacity of biochar can interfere colorimetric determination of the hydrolysed PNP, either by the sorption of the substrate or the reaction-product of hydrolysis into biochar surface. The aim of the present work is to study the biochar sorption capacity for PNP in biochar-blended composting mixtures in order to assess its impact on the estimation of the colorimetric-based enzymatic assays. A retention test was conducted by adding a solution of known amounts of PNP in universal buffer solution (pH = 5, 6.5 and 11, corresponding to the β-glucosidase, acid and alkaline phosphatase activity assays, respectively), in samples taken at the initial stage and after maturation stage from 4 different composting piles (two manure composting piles (PM: poultry manure, CM: cow manure) and two other similar piles containing 10% of additional biochar (PM + B, CM + B)). The results show that biochar blended composts (PM + B, CM + B) generally exhibited low enzymatic activities, compared to manure compost without biochar (PM, CM). In terms of the difference between the initial and maturation stage of composting process, the PNP retention in biochar was shown more clearly at maturation stage, caused by an enlarged proportion of biochar inside compost mixture after the selective degradation of easily decomposable organic matter. The retention of PNP was more pronounced at low pH (5 and 6.5) than at high pH (11), 3 reflecting on pH dependency of sorption 49 capacity of biochar and/or PNP 50 solubility.


Sign in / Sign up

Export Citation Format

Share Document