Molecular Beam Epitaxy of Cu-Doped BaSi2 Films on Si(111) Substrate and Evaluation & Qualification of Depth Profiles of Cu Atoms for the Formation of Efficient Solar Cells

2011 ◽  
Vol 326 ◽  
pp. 139-143 ◽  
Author(s):  
M. Ajmal Khan ◽  
T. Saito ◽  
M. Takeishi ◽  
T. Suemasu

The doping of Cu in the BaSi2 films grown by molecular beam epitaxy (MBE) with various Cu concentrations for the suitability of the solar cells was studied in this paper. The main objective of the present work is to investigate and compare the carrier concentration of Cu-doped BaSi2 films grown with different Cu Knudsen cell temperatures and qualify as a potential candidate for more efficient solar cells. The reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD) measurements and secondary ion mass spectroscopy (SIMS), were used to determine the structure, depth profile and composition of the grown samples. The electrical properties like resistivity as well as carrier concentration were measured by using a four point probe method and Van der Pauw technique, respectively. During the MBE growth, different temperatures for Cu Knudsen cell ranging from 800 to 1200 °C were chosen and the optimum growth condition for both heavily doped n-type as well as p-type in the MBE was investigated. In our previous work, the Al, Sb doped BaSi2 were used as a potential candidate for the formation of pn-junction for solar cells, but the result was not encouraging one due to diffusion and segregation problems in the surface and BaSi2/Si interface regions. In the present work n-type BaSi2 layers with their dopant atoms uniformly distributed in the grown layers for the formation of high-quality of BaSi2 pn-junction with single crystal nature were successfully developed. The realizations to develop cost effective and more efficient solar cells are inevitable for both terrestrial as well as space applications.

2012 ◽  
Vol 101 (13) ◽  
pp. 133110 ◽  
Author(s):  
T. Sugaya ◽  
A. Takeda ◽  
R. Oshima ◽  
K. Matsubara ◽  
S. Niki ◽  
...  

2001 ◽  
Vol 30 (6) ◽  
pp. 785-788 ◽  
Author(s):  
B. L. Vanmil ◽  
A. J. Ptak ◽  
N. C. Giles ◽  
T. H. Myers ◽  
P. J. Treado ◽  
...  

2000 ◽  
Vol 639 ◽  
Author(s):  
Ryuhei Kimura ◽  
Kiyoshi Takahashi ◽  
H. T. Grahn

ABSTRACTAn investigation of the growth mechanism for RF-plasma assisted molecular beam epitaxy of cubic GaN films using a nitrided AlGaAs buffer layer was carried out by in-situ reflection high energy electron diffraction (RHEED) and high resolution X-ray diffraction (HRXRD). It was found that hexagonal GaN nuclei grow on (1, 1, 1) facets during nitridation of the AlGaAs buffer layer, but a highly pure, cubic-phase GaN epilayer was grown on the nitrided AlGaAs buffer layer.


1999 ◽  
Vol 567 ◽  
Author(s):  
Z. Yu ◽  
R. Droopad ◽  
J. Ramdani ◽  
J.A. Curless ◽  
C.D. Overgaard ◽  
...  

ABSTRACTSingle crystalline perovskite oxides such as SrTiO3 (STO) are highly desirable for future generation ULSI applications. Over the past three decades, development of crystalline oxides on silicon has been a great technological challenge as an amorphous silicon oxide layer forms readily on the Si surface when exposed to oxygen preventing the intended oxide heteroepitaxy on Si substrate. Recently, we have successfully grown epitaxial STO thin films on Si(001) surface by using molecular beam epitaxy (MBE) method. Properties of the STO films on Si have been characterized using a variety of techniques including in-situ reflection high energy electron diffraction (RHEED), ex-situ X-ray diffraction (XRD), spectroscopic ellipsometry (SE), Auger electron spectroscopy (AES) and atomic force microscopy (AFM). The STO films grown on Si(001) substrate show bright and streaky RHEED patterns indicating coherent two-dimensional epitaxial oxide film growth with its unit cell rotated 450 with respect to the underlying Si unit cell. RHEED and XRD data confirm the single crystalline nature and (001) orientation of the STO films. An X-ray pole figure indicates the in-plane orientation relationship as STO[100]//Si[110] and STO(001)// Si(001). The STO surface is atomically smooth with AFM rms roughness of 1.2 AÅ. The leakage current density is measured to be in the low 10−9 A/cm2 range at 1 V, after a brief post-growth anneal in O2. An interface state density Dit = 4.6 × 1011 eV−1 cm−2 is inferred from the high-frequency and quasi-static C-V characteristics. The effective oxide thickness for a 200 Å STO film is around 30 Å and is not sensitive to post-growth anneal in O2 at 500-700°C. These STO films are also robust against forming gas anneal. Finally, STO MOSFET structures have been fabricated and tested. An extrinsic carrier mobility value of 66 cm2 V−11 s−1 is obtained for an STO PMOS device with a 2 μm effective gate length.


2001 ◽  
Vol 227-228 ◽  
pp. 143-149
Author(s):  
Larry Leung ◽  
Damian Davison ◽  
Arthur Cornfeld ◽  
Frederick Towner ◽  
Dave Hartzell

2019 ◽  
Vol 514 ◽  
pp. 124-129
Author(s):  
Yukun Zhao ◽  
Wenxian Yang ◽  
Shulong Lu ◽  
Yuanyuan Wu ◽  
Xin Zhang ◽  
...  

2017 ◽  
Vol 473 ◽  
pp. 55-59 ◽  
Author(s):  
Keisuke Yamane ◽  
Kento Sato ◽  
Hiroto Sekiguchi ◽  
Hiroshi Okada ◽  
Akihiro Wakahara

1993 ◽  
Vol 312 ◽  
Author(s):  
D. D. Vvedensky ◽  
T. Shitarat ◽  
P. Smilauer ◽  
T. Kaneko ◽  
A. Zangwill

AbstractThe application of Monte Carlo simulations to various epitaxial growth methods is examined from the standpoint of incorporating only those kinetics processes that are required to explain experimental data. A basic model for molecular-beam epitaxy (MBE) is first introduced and some of the features that make it suitable for describing atomic-scale processes are pointed out. Extensions of this model for cases where the atomic constituents of the growing surface are delivered in the form of heteroatomic molecules are then considered. The experimental scenarios that is discussed is the homoepitaxy of GaAs(001) using metalorganic molecular-beam epitaxy (MOMBE) with triethylgallium (TEG) and precursors and using MOCVD with trimethylgallium (TMG). For MOMBE, the comparisons between simulations and experiments are based on reflection high-energy electron diffraction intensities, by analogy with comparisons made for MBE, while for metalorganic chemical vapor deposition (MOCVD) the simulations are compared to in situ glancingincidence x-ray scattering measurements. In both of these cases, the inclusion of a second mobile species to represent the precursor together with various rules for the decomposition of this molecule (in terms of rates and local environments) with be shown to provide a useful starting point for explaining the general trends in the experimental data and for further refinements of the model.


Sign in / Sign up

Export Citation Format

Share Document