Design and Manufacturing of Complex Surface Impeller Based on RE

2011 ◽  
Vol 328-330 ◽  
pp. 619-623
Author(s):  
Zhi Yang Li ◽  
Ming Yu Huang ◽  
Hong Ju Hu ◽  
Hong Jun Ni ◽  
Yu Zhu ◽  
...  

Based on the instance of collection the data of complex surface impeller and reconstruction the three-dimensional model, it describes the concepts and basic principles of Reverse Engineering, and discusses the entire process in detail, which are from the data of impeller collected, the impeller three-dimensional model re-Construction, fixture design to NC simulation machining. Solved the design and manufacturing problems of complex surface parts, which can not be solved by the conventional methods.

2015 ◽  
Vol 752-753 ◽  
pp. 1301-1306 ◽  
Author(s):  
Xing Xing Wang ◽  
Jin Dong Wei ◽  
Yi Pei ◽  
Yu Zhu ◽  
Hong Jun Ni

Reverse Engineering (RE) and Rapid Prototyping (RP) were used for manufacturing cream bottle. Points cloud data of cream bottle was accessed by handheld laser scanner firstly. Then, points cloud data was handed by Imageware software and the three-dimensional model was formed by Solidworks software. Finally, the entity model was manufacturing by RP machine. In the research, rapid prototyping was combined with reverse engineering technology, manufacturing cycle was shorten, production requirements, improve efficiency and other advantages were met.


2017 ◽  
Vol 903 ◽  
pp. 120-127 ◽  
Author(s):  
Elena María Beamud González ◽  
Pedro Jose Núñez López ◽  
Eustaquio García Plaza ◽  
David Rodríguez Salgado ◽  
Alfonso González González ◽  
...  

One of the main shortcomings of individualized training in the use of computer aided design (CAD), and computer aided manufacturing (CAM) tools is that students lack a sound and broad understanding of the type of tools, and their specific and integrated applications in industrial manufacturing. This study aimed to design an integrated curricular training programme in computer aided tools for the design and manufacture of mechanical components based on reverse engineering techniques. By using real products that students can see and touch, a scanned copy is obtained for subsequent reconstruction into a virtual three-dimensional model using the software for optimizing the point cloud, meshing, and creating both the surface and solid. Once the virtual three-dimensional model has been obtained, it is exported to a solid modelling CAD (3D-CAD) software for modification according to the geometrical requirements. The next step is for students to manufacture a component using rapid prototyping techniques, which allow them to visualize, analyse, and inspect a component to optimize its design. The use of computer aided manufacturing software enables students to design and plan machining operations virtually to obtain a computer numeric control (CNC) program for the manufacture of a component with a CNC machine tool. Finally, students perform a quality control of the component by employing a range of measurement techniques. This training program is integrated into the subjects of the mechanical engineering degree, where students can work with these tools in line with an intergraded curriculum.


2013 ◽  
Vol 455 ◽  
pp. 232-235
Author(s):  
Xue Wen Sun ◽  
Hai Bo Yang

Coiler is a very important equipment in the aluminum cold rolling production line. It plays an important role in improving the quality of the strip. In this essay, taken the aluminum cold rolling coiler drive system as the research object, in order to studying its dynamics characteristic, three-dimensional model has been built based on the finite element method. With the model, the aluminums weight has been verified, frequency and modal have been discussed, and the dangerous speed zone has been built by the first frequency. The result could serve as theoretical base for coiler design and manufacturing process.


2014 ◽  
Vol 608-609 ◽  
pp. 674-677
Author(s):  
Yan Yuan ◽  
Le Cao

In Visual C++, OpenGL was programmed for developing three-dimensional model design system, the basic principles for modeling, as well as the methods and steps of system development are introduced, and example demonstration was conducted. The system realized the three-dimensional display, processing and man-machine interaction of common packaging, and showed the cushion packaging effect realistically and vividly, which provides the most intuitional image basis for the further modification and specific implementation of buffer scheme.


2017 ◽  
Author(s):  
Bruno Silva de Lima ◽  
Alysson Fernandes Teixeira ◽  
Arthur Braga Thiriet ◽  
Ramon Molina Valle

Author(s):  
C. Jacobsen ◽  
E. Ashe ◽  
R. Noorani

The primary goal of this research was to evaluate the effectiveness of a low-cost reverse engineering system to recreate a physical, three-dimensional model of a human hand. In order to achieve the goal of this research, three key objectives were fulfilled: (1) the first objective was to recreate the physical model of the human hand using a low-cost experimental setup (<$5000), (2) the second objective was to assess the ability of the reverse engineered hand to perform common tasks of everyday life, and (3) the third objective was to investigate the potential biomedical applications of the reverse engineered human hand. A chosen test subject had his or her hand molded and cast into a plaster three-dimensional model that could be held steady and scanned very precisely by a NextEngine Desktop 3D Scanner. Other methods could have been employed to achieve the scanned model, but given the experimental setup and timeline a casted model was assumed to be the most appropriate method to achieve the best results. The plaster casting of the subject’s hand was scanned several times using different orientations of the model relative to the stationary 3D scanner. From these scans, a computer CAD model of the human hand was generated, modified, and 3D printed using a Makerbot Replicator 2. The printed model was evaluated by its ability to perform common every-day tasks such as picking up a cup/bottle, holding a pen/pencil, or opening/closing around an object. Several iterations of the printed human hand were evaluated in order to determine the best design for the fingers’ joints and cable-driven motion system. The first iteration of the printed hand featured a snap-in joint system. This joint design suffered from requiring a large number of individual pieces and poor tolerances of the Makerbot printer. The second iteration featured a press fit style joint system. This system was hindered by tolerances similar to the first iteration as well as plastic deformation of the printed material due to inadequate elasticity. The third and final iteration of the joint system featured a single printed assembly for which the entire prosthetic could be printed at one time. It was expected that the hand would be able to translate the rotational movement of an individual’s wrist to tension the cables of the motion system thereby closing the fingers into a first. This movement will allow the user to close the prosthetic hand around everyday objects and pick them up with relative ease. Although the possibilities of reverse engineering and 3D printing systems have greatly expanded as a result of greater affordability and increased accuracy, their applications in the biomedical field have yet to be fully explored.


Skull Base ◽  
2008 ◽  
Vol 18 (S 01) ◽  
Author(s):  
Akio Morita ◽  
Toshikazu Kimura ◽  
Shigeo Sora ◽  
Kengo Nishimura ◽  
Hisayuki Sugiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document