Analysis on Dynamic Characteristics of HTC100 NC Lathe Bed

2011 ◽  
Vol 328-330 ◽  
pp. 700-703
Author(s):  
Mo Wu Lu ◽  
Guo Ming Zhang ◽  
Wei Qiang Zhao

The processing performance is closely related with dynamic performance and the dynamic performance is one of the most important performance indicators which is affecting the performance and product quality. The machine is affected most by the dynamic performance of machine bed. The modal analysis method is used to analyze the dynamic performance of the machine. In this paper, the modal analysis of lathe bed is conducted. A 3D solid model of HTC100 NC lathe bed is built with SolidWorks. In order to facilitate the finite element analysis, the model of lathe bed is simplified. The modal analysis of lathe bed is calculated with ANSYS Workbench 12. The first six natural frequencies and corresponding modes are obtained through modal analysis of the lathe bed. According to the low-order natural frequency and modal vibration shapes, the rigidity vulnerable area of lathe bed is realized, which provides the reliable theory to improve lathe bed structure.

Akustika ◽  
2021 ◽  
pp. 2-7
Author(s):  
Antonina Sekacheva ◽  
Alexander Noskov ◽  
Lilia Pastukhova

The article deals with the problem of emergence of noise and vibration from pipelines of multi-storey residential buildings. The determination method of risk of increased noise and vibration using the modal analysis method in the ANSYS Workbench software packages is offered. The numerical modal analysis of straight pipeline sections with various geometrical parameters is carried out. Risk predictions of possible resonant modes are made. The maximum allowed span lengths between supports for sections of pipeline systems with a diameter of 15, 20, 25, 32, 40, 48, 60, 70, 102, 114, 140, 168, 180, 219 mm are offered.


2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985396 ◽  
Author(s):  
Jiong Li ◽  
Yu Wang ◽  
Kai Zhang ◽  
Zhiqiao Wang ◽  
Jiaxing Lu

As a novel robot which mainly engages in the demolition and transformation of various concrete buildings, the demolition robot has developed rapidly in recent years. The impact force is mainly produced by the breaking hammer installed in the front end of the arm. As the most important part of a demolition robot, the boom arm is mainly composed of four parts including a supporting arm, a main arm, a fore arm, and a breaking hammer system. In this article, a mechanical model of the boom arm is established, and the finite element analysis obtaining the first four-order natural frequencies and modes is carried out in ANSYS Workbench. The results reveal that the resonation can be easily stimulated when a hydraulic breaking hammer is at the second-order frequency. The mounting block of the hydraulic breaking hammer, the hinge parts of the supporting arm, and the main arm are easily deformed or damaged in the Y direction by analyzing the deformation in three directions of the second-order mode. After the structure optimization, the vibration characteristics of the two parts are significantly enhanced, which provides a theoretical basis for optimizing the prototype and gives a reference in the experimental modes.


2011 ◽  
Vol 211-212 ◽  
pp. 666-670
Author(s):  
Guo An Hou ◽  
Tao Sun

This paper discusses the design and analysis of a direct-drive linear slide used linear mortor. The alloy steel carriage is fully floated by twelve hydrostatic bearings, and it is force-closed. It has very high stiffnesses, 1700N/mm in vertical direction and 690N/mm in horizontal direction. The working stroke of slide is 200 mm. The slide is driven by a ironless linear motor. The optic linear encoder was used for the measurements and feedback. To analyze the static and dynamic performance of the slide, the modelling and simulation process, using the finite element analysis method, is presented.


2011 ◽  
Vol 347-353 ◽  
pp. 1276-1280
Author(s):  
Hong Liang Hu ◽  
Rui Jie Wang ◽  
Chun Ling Meng ◽  
Guo Feng Li

Abstract. Combining characteristic of the Wind Tturbines's rotary support, using finite element method, the paper probe the rotary support finite element analysis of static and modal analysis. Through the static analysis of the rotary support, receiving the deformation and stress-strain results; through modal analysis,receiving the 6-order natural frequency and vibration shape.Analyzing of the main failure forms and Dynamic performance ,the results provide a theoretical basis of improvement of the design and to finalize the program.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Zhuo Zhang ◽  
Yueqing Yu ◽  
Xuping Zhang

Comprehensive analysis on the modal characteristics of V-shaped electrothermal microactuators is presented in this paper for the first time. Considering the unique geometric characteristics of the V-shaped beam, that is, two inclined beams supporting a movable shuttle, both the lateral and longitudinal deflections are taken into account in the modal analysis. Boundary and continuity conditions are employed to obtain the frequency equation. Natural frequencies are then obtained by solving the frequency equation. Mode shapes corresponding to their natural frequencies are also calculated analytically. The theoretical modal analysis is verified with the finite element analysis using ANSYS software. Based on the model analysis, this paper further investigates the relationship between natural frequencies and the volume scaling of the V-shaped beam. Finally, comprehensive parametric studies in terms of material properties and structural dimensions are conducted to provide insights and guidance in designing the V-shaped beam electrothermal microactuators.


2014 ◽  
Vol 623 ◽  
pp. 41-47
Author(s):  
Fu Yang Chen ◽  
Yan Wu ◽  
Yu An He

The 3D solid model of the tube automatically benchmarked equipment is built by UG software. With seamless connectivity UG and ANSYS Workbench software, modal analysis of the fuselage of the automatically benchmarked equipment built by ANSYS Workbench software. Then natural frequencies and modal of the lower six orders are obtained, and the vibration weakness of the structure has also been found out. To improve the structure provides a reliable reference


2012 ◽  
Vol 229-231 ◽  
pp. 919-922
Author(s):  
Bao Dong Bai ◽  
Guo Hui Yang ◽  
Bing Yin Qu ◽  
Jian Zhang

In this paper, the modal analysis was carried out on the core and cavity of a 160KVA dry-type transformer based on the finite element analysis software of ANSYS. And the simulation results of the natural frequencies and modal shapes were obtained, which provided a theoretical guidance to the design of the transformer structure, and were meaningful to reduce the vibration and noise level of the transformer.


2013 ◽  
Vol 677 ◽  
pp. 273-277
Author(s):  
Xiao Xin Gong ◽  
Qiang Lu

In order to analyze vibration characteristics of whole structure of the spherical grinder, the finite element analysis software is applied to finite element modal analysis of the structure. 3D model of spherical grinder is established by Pro/ENGINEER software. Finite element model of spherical grinder is established in the finite element analysis software ANSYS Workbench. The previous 6-order inherent frequencies and the corresponding vibration modes are obtained through the finite element calculation. According to the vibration intensity distribution, the corresponding improvement measure is put forward. It provides theoretical basis for dynamic analysis and improved design of spherical grinder.


2014 ◽  
Vol 592-594 ◽  
pp. 2122-2126
Author(s):  
M.L. Chandravanshi ◽  
Alok Kumar Mukhopadhyay

Modal analysis plays an important role at design stage which helps in diagnosing problems related to structural vibration. This paper delineates about the experimental work to investigate the modal parameters, such as mode shapes and natural frequencies of a metallic container. The modal parameters have been experimentally determined for the empty container, the container filled with one liter of water and the container filled with two liters of water. Theoretical analysis is also carried out through finite element analysis using ANSYS workbench 14 for finding out modal parameters of the empty container only. The boundary conditions of the container in the experimental and FEM analysis have been kept same. The values of modal parameters obtained by the two methods then compared for their proximity


2013 ◽  
Vol 842 ◽  
pp. 427-432
Author(s):  
Bing Yuan ◽  
Yun Xia Liu ◽  
Jun Liang Yang

In this paper, the sapphire crystal furnace is taken as the object of research. Based on the finite element analysis software ANSYS Workbench, static and modal analysis of the key parts of the crystal furnace are completed, the static and dynamic characteristics of the parts are studied, and the natural frequencies and the mode shapes of the key parts are obtained. According to the analysis of each mode type of the vibration, the weaknesses of the structure are identified, which provides theory reference for the structure optimization design of crystal furnace.


Sign in / Sign up

Export Citation Format

Share Document