Numerical Back Inversion Method of Compressive Creep Parameters of Rock Masses under Rigid Bearing Plate and its Application

2008 ◽  
Vol 33-37 ◽  
pp. 429-434 ◽  
Author(s):  
Wen Dong Yang ◽  
Qiang Yong Zhang ◽  
Jian Guo Zhang

Due to lots of hypothesis, the theoretical analytical solution of the creep parameters inversion can not reflect the in-situ conditions actually. In order to simulate the process of the compressive creep tests of the in-situ bearing plate, the affection of the stratum distribution and the influence of the geological status in site actually, FLAC3D is used and numerical back analysis method of the creep parameters at dam site is set up. Based on the in-situ compressive creep tests’ data of the diabase rock masses at Dagangshan dam site, creep parameters are got with this method. Results indicate that the numerical calculated displacements of the compressive creep are similar to the in-situ monitoring displacements. It reveals that with this numerical method creep parameters can be backing analyzed logically. This supplies technical assurances to stability estimate and analysis of rock masses in slope projects.

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Yu-xiao Wang ◽  
Yu-jie Wang ◽  
Long Jiang ◽  
Ping Sun ◽  
Xingchao Lin ◽  
...  

Dahuaqiao Hydropower Station is the sixth cascade hydropower project on the upper stream of the Lancang River, and a number of slope instabilities were found in the reservoir area before reservoir impoundment. The reservoir impoundment and fluctuation of the reservoir water level generally reactivate these potential slope failures or trigger new ones. Therefore, how to cope with the influence of these slope failures on dam safety has always been the focus of attention. However, it is unwise to stabilize all these potentially instable slopes by remedial measures. Based on a two-parameter and four-level back analysis method proposed in this paper, reasonable measures for landslide management are suggested on the basis of the in situ monitoring results and back analysis of geomaterial strength parameters.


2012 ◽  
Vol 204-208 ◽  
pp. 196-201 ◽  
Author(s):  
Jian Cong Xu ◽  
Yi Wei Xu

The parabolic-apex numerical back-analysis method (PNBM) was proposed to obtain such physical-mechanics parameters as Young's modulus and lateral pressure coefficient of surrounding rock by 3D FEM numerical analysis based on in-situ monitoring data. Taking Xiang-an Subsea Tunnel (located in Xiamen, Fujian Province, China) for example, adopting the PNBM using ABAQUS software, three dimensional elastic-plastic FEM-PNBM of tunnel surrounding rock was validated using in-situ monitoring data. The results show as follows: Using the PNBM, not only may high calculation precision be obtained, better meeting the demand of actual projects, but also more reasonable and reliable physical mechanics indices of surrounding rock such as Young's modulus and lateral confinement pressure coefficient, may be obtained. The applicability and the simplicity of this proposed method also support its usefulness.


Author(s):  
Catrin M. Davies ◽  
Peter Nagy ◽  
Aditya Narayanan ◽  
Peter Cawley

A new directional low-frequency Alternating Current Potential Drop (ACPD) technique has been developed for continuous in-situ monitoring of creep strain and damage in alloys. The sensor relies on a modified ACPD technique that measures simultaneously both values of resistance in the axial and lateral directions using a square electrode configuration. The technique monitors the variation in the ratio of the measured axial and lateral resistances, therefore can efficiently separate the mostly isotropic common part of the resistivity variation caused by reversible temperature variations from the mostly anisotropic differential part caused by direct geometrical and indirect material effects of creep. Initially, this ratio can be considered proportional to the axial creep strain, while at later stages, the resistance ratio accelerates due to the formation of directional discontinuities such as preferentially oriented grain boundary cavities and micro-cracking in the material. This ACPD technique has been applied to a series of accelerated creep tests on 2.25CrMoV Steel at 650 °C. The results are presented and the application of the method for online component monitoring is discussed.


2021 ◽  
Vol 293 ◽  
pp. 03008
Author(s):  
Xinchuan Xu ◽  
Zhaoyue Yu ◽  
Fangfang Xue ◽  
Xiaogang Long ◽  
Xinyu Mao ◽  
...  

The existence of faults in the dam site area threatens the stability and safety of large-scale hydropower projects in China. The fault argillaceous zone is the worst kind of fault fracture zone, and the determination of its deformation and strength parameters is the key point of rock engineering investigation. In this study, the in-situ bearing plate test and direct shear test were carried out on the gouge zone of F67 fault in the dam site of Fengman Hydropower Station. The test results show that the deformation and shear law of each test point is good, which is basically consistent with the actual condition of the measured rock mass. However, due to the limited number of measurements, the results are limited in terms of macroscopic representation. The experimental results provide scientific basis for subsequent engineering design and further enhance the understanding of mechanical properties of fault gouges.


2021 ◽  
Author(s):  
Paul Wagner ◽  
Kris Ravi ◽  
Michael Prohaska

Abstract Global warming is one of the most significant issues the world is facing. Capturing carbon dioxide from the atmosphere or industrial processes and storing it in geological formations (carbon capture and storage, CCS) can help counteract climate change. Nevertheless, the interaction between well barrier elements such as cement, casing, tubulars, packers, and valves can lead to possible leakages. To accomplish successful carbon dioxide sequestration, injecting the carbon dioxide in its supercritical state is necessary. The supercritical carbon dioxide can corrode steel and elastomers and react with the calcium compounds in the cement, dissolving them and forming calcium carbonate and bicarbonate in the process. This carbonation can lead to channels forming on the cement-to-rock interface or cracking due to the carbonate precipitation, resulting in a loss of well integrity. This study focusses on finding ways that enable the continuous monitoring of cement integrity, under in-situ conditions, in a lab setup. The construction of an autoclave, capable of withstanding supercritical conditions of carbon dioxide, facilitates the in-situ monitoring. This autoclave also makes CT-scans of the pressurized sample possible, as well as acoustic measurements, using state-of-the-art piezo elements. The first tests will establish a baseline using neat Class G Portland cement to verify the design and sensors. The set up consists of a rock core in the middle of the autoclave surrounded by a cement sheath. A prepared channel in the center of the core expedites the distribution of the carbon dioxide. Once the ability of the sensors to monitor the integrity is verified, different cement compositions and their interaction with supercritical carbon dioxide can be studied. The experimental setup and the procedure discussed here closely simulate the downhole condition. Hence, the results obtained using this setup and procedure is representative of what could be observed downhole. The direction is not to remove the sample from the autoclave for analysis, as is the current industry practice, but to measure cement integrity under in-situ conditions over an extended period of time. Digitalization is powering the in-situ analysis in these tests. The first two tests of this study, using the afore mentioned autoclave, investigated the carbonation behaviour of two Class G Portland cement slurrys, one with a low and one with a high slurry-density. The low-density slurry showed extensive degradation and even the high-density slurry showed carbonation, but only close to the sandstone core. The results from this study can lead to the prevention of leakage of carbon dioxide to the environment and other formations, which defeats the purpose of carbon dioxide sequestration. These results should improve the economics of these wells as well as the health, safety, and environmental aspects.


2021 ◽  
Author(s):  
Xiaodong Ma ◽  
Marian Hertrich ◽  
Florian Amann ◽  
Kai Bröker ◽  
Nima Gholizadeh Doonechaly ◽  
...  

Abstract. The increased interest in subsurface development (e.g., unconventional hydrocarbon, deep geothermal, waste disposal) and the associated (triggered or induced) seismicity calls for a better understanding of the hydro-seismo-mechanical coupling in fractured rock masses. Being able to bridge the knowledge gap between laboratory and reservoir scales, controllable meso-scale in situ experiments are deemed indispensable. In an effort to access and instrument rock masses of hectometer size, the Bedretto Underground Laboratory for Geosciences and Geoenergies (‘Bedretto Lab’) was established in 2018 in the existing Bedretto Tunnel (Ticino, Switzerland), with an average overburden of 1000 m. In this paper, we introduce the Bedretto Lab, its general setting and current status. Combined geological, geomechanical and geophysical methods were employed in a hectometer-scale rock mass explored by several boreholes to characterize the in situ conditions and internal structures of the rock volume. The rock volume features three distinct units, with the middle fault zone sandwiched by two relatively intact units. The middle fault zone unit appears to be a representative feature of the site, as similar structures repeat every several hundreds of meters along the tunnel. The lithological variations across the characterization boreholes manifest the complexity and heterogeneity of the rock volume, and are accompanied by compartmentalized hydrostructures and significant stress rotations. With this complexity, the characterized rock volume is considered characteristic of the heterogeneity that is typically encountered in subsurface exploration and development. The Bedretto Lab can adequately serve as a test-bed that allows for in-depth study of the hydro-seismo-mechanical response of fractured crystalline rock masses.


2017 ◽  
Vol 26 (3) ◽  
pp. 317-325
Author(s):  
Mohsen Rezaei ◽  
Rasoul Ajalloeian ◽  
Mohammad Ghafoori

For determination of the in-situ deformation modulus of rock mass at Bakhtiari Dam site, located in south-west of Iran, plate jacking tests (PJT) and dilatometer tests (DLT) carried out during the geotechnical investigations. In this study, the results of PJTs and DLTs were compared. This comparison involves 89 vertical and horizontal PJTs and 83 DLTs carried out in 6 rock units of Sarvak formation. Although, both PJTs and DLTs in the Bakhtiari Dam site were performed in same geological and geotechnical conditions, but there are not sufficient side by side data to make a paired two samples correlation. Therefore, the mean of in-situ data was compared at each rock unit. Besides Mann–Whitney U tests were performed to compare in-situ test results. The comparison shows that the deformation modulus measured by both methods has no significant differences. However, in low quality rock masses the moduli measured by the use of DLTs were greater than the modulus measured by PJTs. Conversely, in high quality rock masses the results of PJTs were greater than DLT’s.


Sign in / Sign up

Export Citation Format

Share Document