scholarly journals Testing of Precast Lightweight Foamed Concrete Sandwich Panel with Single and Double Symmetrical Shear Truss Connectors under Eccentric Loading

2011 ◽  
Vol 335-336 ◽  
pp. 1107-1116 ◽  
Author(s):  
Noridah Mohamad ◽  
Hilmi Mahdi Muhammad

This paper reports the structural behavior of precast lightweight foamed concrete sandwich panel, PLFP, subjected to eccentric loading. An experiment was conducted to investigate the structural performance of PLFP under this load. Two PLFP panels, PE-1 and PE-2 were cast with 2000 mm in heights, 750 mm in width and 100 mm in thickness. The thickness of the wall is actually a combination of three layers. Skin layers were cast from lightweight foamed concrete while the core layer is made of polystyrene. The skin layers were connected to each other by 9 mm steel shear truss connector which were embedded through the layers. Panel PE-1 was strengthened with single diagonal shear truss connectors made of 6 mm steel rebar while panel PE-2 was strengthened with symmetrical diagonal shear truss connectors of similar steel diameter. Both panels were tested under eccentric load till failure. The results showed that panel with symmetrical double truss connectors, PE-2, is able to sustain higher load compared to panel with single shear truss connector. The load-deflection profiles indicate that both panels achieved certain degree of composite action especially during the later stage of loading where the wythes tend to move in the same direction until they reached failure. The load-strain curves for both panels highlight the inconsistent distribution of surface strain along the height of panels. The overall trend of the strain curves show that they are under compression.

2015 ◽  
Vol 75 (9) ◽  
Author(s):  
Noridah Mohamad ◽  
Abdul Aziz Abdul Samad ◽  
Noorwirdawati Ali ◽  
Josef Hadipramana ◽  
Norwati Jamaluddin

This paper investigates the structural behaviour of two connected Sandwiched Precast Lightweight Foamed Concrete Panel (PLFP) in term of their load bearing capacities and failure modes. Three (3) connected PLFP panels were cast using foamed concrete as the wythe and polystyrene as the core layer. Each connected panel were cast from two single panels connected using L-bar connection. The panels were strengthened with steel bar reinforcement embedded in both wythes which were connected to each other by the steel shear truss connectors. The connected PLFP panels were tested under flexural load. A single PLFP panel was cast as a control panel and tested under axial load. The results were analysed in term of the panel’s ultimate load, crack pattern and mode of failure. Results showed that the two connected PLFP panels were able to sustain slightly lower ultimate load compared to single PLFP panel. Crack at 45 degree angle at top half of panel and small crack at surface between joint of the connection were observed.


Holzforschung ◽  
2017 ◽  
Vol 72 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Moira P. Burnett ◽  
Alireza Kharazipour

AbstractLightweight construction of composites is one of the strategies for developing material-saving panels, whereas light honeycomb boards or sandwich panels (SPs) based on foam or wood materials seem to be very promising in this context. The objective of the present work was the development of an SP with a reduced density based on nearly 100% expanded maize granular in the core layer, which was combined with 3 mm thin and stiff poplar plywood as face materials. In focus were mechanical and physical properties of the SPs, which should be applicable in the furniture industry and competitive with conventional wood composites such as fibreboards or particle boards.


Buildings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 155
Author(s):  
Robert Studziński ◽  
Katarzyna Ciesielczyk

In this paper, we present an original experimental investigation on a pull-out test of a blind rivet from the external facing of sandwich panels with various core layer materials (polyisocyanurate foam, mineral wool, and expanded polystyrene). The blind rivets were subjected to an axial and eccentric tensile force introduced as static and quasi-cyclic loading. The statistical sample size was 5. The laboratory results depicted that the core layer of a sandwich panel influenced the load-displacement path of the investigated blind rivet connections, regardless of the nature of the load (static, quasi-cyclic) and the point of the load application (axial, eccentric). It was observed that the blind connection with the polyisocyanurate foam core sandwich panel was characterized by a reduction of both the capacity and the secant stiffness when compared with the blind connection with the mineral wool or the expanded polystyrene core sandwich panels. Moreover, the tested connections demonstrated that the eccentric load gave a higher flexural stiffness than the axial load and that the quasi-cyclic load did not reduce their stiffness and capacity.


2018 ◽  
Vol 22 (4) ◽  
pp. 1179-1192 ◽  
Author(s):  
Y. H. Mugahed Amran ◽  
Raizal S. M. Rashid ◽  
Farzad Hejazi ◽  
A. A. Abang Ali ◽  
Nor Azizi Safiee ◽  
...  

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 70 ◽  
Author(s):  
Robert Studziński ◽  
Tomasz Gajewski ◽  
Michał Malendowski ◽  
Wojciech Sumelka ◽  
Hasan Al-Rifaie ◽  
...  

In this paper, an experimental investigation is presented for sandwich panels with various core layer materials (polyisocyanurate foam, mineral wool, and expanded polystyrene) when subjected to a justified blast load. The field tests simulated the case for when 5 kg of trinitrotoluene (TNT) is localized outside a building’s facade with a 5150 mm stand-off distance. The size and distance of the blast load from the obstacle can be understood as the case of both accidental action and a real terroristic threat. The sandwich panels have a nominal thickness, with the core layer equal 100 mm and total exterior dimensions of 1180 mm × 3430 mm. Each sandwich panel was connected with two steel columns made of I140 PE section using three self-drilling fasteners per panel width, which is a standard number of fasteners suggested by the producers. The steel columns were attached to massive reinforced concrete blocks via wedge anchors. The conducted tests revealed that the weakest links of a single sandwich panel, subjected to a blast load, were both the fasteners and the strength of the core. Due to the shear failure of the fasteners, the integrity between the sandwich panel and the main structure is not provided. A comparison between the failure mechanisms for continuous (polyisocyanurate foam and expanded polystyrene) and non-continuous (mineral wool) core layer materials were conducted.


2021 ◽  
Vol 8 (1) ◽  
pp. 271-306
Author(s):  
Ilham Widiyanto ◽  
Faiz Haidar Ahmad Alwan ◽  
Muhammad Arif Husni Mubarok ◽  
Aditya Rio Prabowo ◽  
Fajar Budi Laksono ◽  
...  

Abstract In the field of logistics, containers are indispensable for shipments of large quantities of goods, particularly for exports and imports distributed by land, sea, or air. Therefore, a container must be able to withstand external loads so that goods can safely reach their destination. In this study, seven different models of container skins were developed: general honeycomb, cross honeycomb, square honeycomb, corrugated wall, flat, flat with a single stiffener, and flat with a cross stiffener. Testing was performed using the finite element method. In the static simulation, the best results were obtained by the model with corrugated walls. As the main element and the content of the sandwich panel structure, the core plays a role in increasing the ability of the structure to absorb force, thereby increasing the strength of the material. In the thermal simulation, the best results were obtained by the general honeycomb walls. Vibration simulations also showed that the square honeycomb design was better at absorbing vibration than the other models. Finally, the corrugated model had the best critical load value in the buckling simulation.


2013 ◽  
Vol 795 ◽  
pp. 414-418
Author(s):  
I. Ahmad ◽  
W.I. Goh ◽  
S. Samsuddin ◽  
N. Mohamad ◽  
M.H.A. Rahman ◽  
...  

Recent years in Malaysia, precast concrete sandwich panel gained its popularity in building industries due to its economic advantages, superior thermal and structural efficiency. This paper studied the structural behaviour of precast lightweight foamed concrete sandwich panel (PLFP) with double shear truss connectors under eccentric load. Preliminary results were analysed and studied to obtain the ultimate load carrying capacity, load-deflection profiles and strain distribution across the panel thickness at mid depth. The achieved ultimate load carrying capacity of PLFP due to eccentric load from the experimental work was compared with values calculated from classical formulas (if it is more than 1 comparison) developed by previous researchers. Preliminary results showed that, the use of double shear truss connectors in PLFP was able to improve its ultimate load carrying capacity to sustain eccentric load and achieve certain compositeness reaction in between the wythes.


Sign in / Sign up

Export Citation Format

Share Document