Photocatalytic Degradation of 4-Chlorophenol with a Novel α-Ga2O3

2011 ◽  
Vol 356-360 ◽  
pp. 1319-1322
Author(s):  
Bao Xiu Zhao ◽  
Li Na Zheng ◽  
Yuan Wei ◽  
Fan Yang

Chlorophenols is a kind of environmental endocrine disrupting chemicals (EDCs) and it is hard for the common methods to degrade or remove them, so how to decompose these pollutants has attracted researches’ attention. In this paper, a novel α-Ga2O3was used to degrade 4-chlorophenol via photocatalytic reaction and degradation kinetics was investigated. The effects of main factors, such as dosage of α-Ga2O3and pH of aqueous solution, on degradation were studied, and degradation kinetics was also established. Experimental results displayed that the optimal pH of aqueous solution was about 7.8 and almost 98% 4-chlorophenol was decomposed after 2 h, when the dosage of α-Ga2O3was 0.4 g and the initial concentration of 4-chlorophenol was 20 mg/L (V=200 ml). Photocatalytic degradation of 4-chlorophenol with α-Ga2O3abided by first-order kinetics and half-life time was 20.4 min.

2021 ◽  
Author(s):  
Chubraider Xavier ◽  
Bianca Rebelo Lopes ◽  
Caue Ribeiro ◽  
Eduardo Bessa Azevedo

Abstract Bisphenol A (BPA), a common polymer plasticizer, is a contaminant of emerging concern with endocrine disrupting activity. Among existing abatement methods, photodegradation demands easily fabricated, inexpensive, high photoactive catalysts, leading to non-toxic byproducts after degradation. It is proposed an optimized (surface response methodology) catalyst for those goals: graphitic carbon nitride impregnated with reduced graphene oxide. The method was based on the sonication of preformed particles followed by reduction with hydrazine in reflux, a methodology that allows for better reproducibility and larger specific surface areas. The catalyst removed 90% of BPA (100 mL, 100 µg L− 1) in 90 min under UV irradiation (365 nm, 26 W) compared to 50% with pure g-C3N4 (pseudo-first-order kinetics). Tests with radicals scavengers revealed that superoxide radical was the main oxidation agent in the system. By mass spectrometry, two major degradation products were identified, which were less ecotoxic than BPA towards a series of organisms, according to in silico estimations performed with the ECOSAR 2.0 software.


Author(s):  
Oualida Nour El Houda Kaabeche ◽  
Razika Zouaghi ◽  
Soraya Boukhedoua ◽  
Seyfeddine Bendjabeur ◽  
Tahar Sehili

Abstract The photocatalytic degradation of hexylpyridinium bromide (HPyBr) from an aqueous solution was studied by focusing on comparison of the photoactivity of ZnO and TiO2 P25. The process was carried out under different experimental conditions. The results showed that there is no adsorption of pollutant by both catalysts in the dark. The efficiency of P25 Degussa and ZnO photocatalysts were compared, and the photocatalytic kinetics study showed that ZnO is more efficient than TiO2 P25. The HPyBr photodegradation was found to follow a pseudo-first order kinetics, and the higher rates constants were obtained at the alkaline medium for ZnO (pH = 11, kapp = 9.61 × 10–2 min−1) and at acidic medium for TiO2 P25 (pH = 3, kapp = 1.28 × 10–2 min−1). The Langmuir–Hinshelwood model was found suitable to explain the rate constant data for the ionic liquid degradation by both catalysts. The presence of carbonate ions at alkaline medium was found to reduce the HPyBr degradation for ZnO and to enhance the HPyBr degradation for TiO2, this enhancement in TiO2/CO32-/UV system was confirmed by the addition of •OH and hvb+ scavengers. According to TOC and COD results, HPyBr mineralization was faster in ZnO/UV system than in TiO2/UV system.


2018 ◽  
Vol 5 (4) ◽  
pp. 171457 ◽  
Author(s):  
Zhigang Yi ◽  
Juan Wang ◽  
Tao Jiang ◽  
Qiong Tang ◽  
Ying Cheng

In this study, photocatalytic experiments of 20 mg l −1 sulfamethazine (SMN) in aqueous solution containing ZnO with different morphologies, tetra-needle-like ZnO (T-ZnO), flower-like ZnO (F-ZnO) and nanoparticles ZnO (P-ZnO), were performed. The results indicated that photocatalytic degradation of SMN was effective and followed the pseudo-first-order reaction, but the degree of SMN mineralization showed obvious differences using ZnO with different shapes. After 12 h irradiation, 86%, 71% and 50% of the initial total organic carbon was eliminated in SMN suspension containing T-ZnO, F-ZnO and P-ZnO, respectively. The release ratio of sulfur was close to 100% in the presence of T-ZnO, but reached to 86% and 67% in the presence of F-ZnO and P-ZnO, respectively. The release ratio of nitrogen was about 76%, 63% and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst, respectively. The morphology of ZnO played an important role in determining its catalytic activity. Seven intermediates were observed and identified in the UV/T-ZnO reaction system by LC-MS/MS analysis, and a possible degradation pathway was proposed.


Author(s):  
ARGELIA M. L. LENARDÓN ◽  
PATRICIA M. DE LA SIERRA ◽  
FERNANDA MARINO

Estudou-se a cinética de degradação da mistura dos isômeros alfa e beta Endosulfan em diferentes condições de trabalho. Os compostos foram adicionados em água ultrapura, água do rio, água de rio filtrada e água ultrapura com sais (salinidade similar à agua do rio utilizada). As condições de degradação escolhidas foram: escuridão e duas temperaturas (14+1 ºC e 26+1 ºC). As amostragens foram programadas de modo a se obter dados periódicos mais freqüentes no início da experiência e posteriormente mais espaçados até o seu final (230 dias). As amostras foram submetidas à microextração e analisadas por cromatografia em fase gasosa com detector de Ni63 e coluna Megabore DB-5. A degradação foi descrita de acordo com a cinética de primeira ordem, determinando-se os tempos de meia vida (t1/2) e as energias de ativação (Ea). Os dados obtidos evidenciaram que a temperatura é o fator preponderante, sendo possível deduzir que o alfaendosulfan, exceto para água ultrapura (AU), é mais influenciado pela temperatura do que o beta-endosulfan. O segundo efeito mais importante refere-se ao tipo de água utilizada como matriz, devido à influência da salinidade. PERSISTANCE OF ENDOSULFAN IN STATIC AQUEOUS MEDIUM Abstract Degradation kinetics of a mixture of alpha- and beta-Endosulfan isomers was studied under different conditions. The compounds were spiked in ultrapure water, river water, filtered water and ultrapure water with salts (similar salinity condition to that of the river water used). The degradation conditions chosen were: darkness, two temperatures (14+1 ºC e 26+1 ºC). Samplings were programmed in order to obtain more frequent periodical data in the beginning of the experience and after more spaced until its end (230 days). The samples were submitted to microextraction and then analyzed by gas chromatography through a Ni63 detector equipped with a Megabore DB-5 column. Degradation was described using first-order kinetics to determine half-life times (t1/2) and activation energies (Ea). The data obtained evidenced that temperature is the predominant factor, it can possibly be inferred that alfa-endosulfan is much more influenced than beta-endosulfan except for ultrapure water (UW). The second important effect is the water type used as matrix, due to the influence of salinity.


2011 ◽  
Vol 399-401 ◽  
pp. 1067-1070
Author(s):  
Chun Yan Li ◽  
Cong Cong Hu ◽  
Zhi Guo Wen ◽  
Sheng Xiong Dong

The method of high performance liquid chromatography (HPLC) is established to determine the content of antibacterial agent — ciprofloxacin (CF) in the degradation solution of ciprofloxacin-polyurethane (CFPU) and investigate the in vitro degradation kinetics by plotting and fitting the cumulative release curves to inspect the effects of different medium and different concentrations on drug release. The results showed that the HPLC method is accurate, reliable and simple. The drug-release of CFPU was bioresponsive and could be accorded with first order kinetics. It was observed that CF was released from CFPU by a combination of diffusion and erosion mechanism, mainly in the manner of diffusion in the absence of infection while erosion mechanism in the presence of infection.


2013 ◽  
Vol 63 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Atul Awasthi ◽  
Majid Razzak ◽  
Raida Al-Kassas ◽  
Joanne Harvey ◽  
Sanjay Garg

The aim of this study was to evaluate stability characteristics and kinetics behavior of abamectin (ABM) as a 1 % (m/V) topical veterinary solution. During the study, samples stressed at 55 and 70 °C were regularly analyzed for several parameters over 8 weeks on a chromatographic (HPLC) system, using a Prodigy C18, 250 x 4.6 mm, 5-μm, column eluting with 15 : 34 : 51 (V/V/V) water/methanol/ acetonitrile as mobile phase. The HPLC method was validated for precision, accuracy, linearity and specificity, and was found to be stability indicating. The results showed that degradation of ABM followed first-order kinetics and data on loss in kobs (s-1) and half life (t1/2, days) demonstrated ABM showing the maximum stability in glycerol formal. The degradation behavior of ABM varies from solvent to solvent. The effect of added alkali on pH change and loss of ABM was studied and found to be unique for all solvents and very distinct from typical hydrolysis degradation. The present study may serve as a platform to design and develop topical non-aqueous solutions of ABM for veterinary use given no such comprehensive efforts have been published to date on the stability profile of ABM in non-aqueous solvents.


Author(s):  
Madima Ntakadzeni ◽  
William Wilson Anku ◽  
Penny Poomani Govender ◽  
Leelakrishna Reddy

Background: A molybdenum sulfide (Mo3S4) nanorod photocatalyst was synthesised through the facile hydrothermal method and applied in the degradation of Rhodamine B and Methyl Blue dyes under visible light irradiation. Methods: The Mo3s4 nanorod was synthesised using sodium molybdate, sodiumdiethyldithiolcarbonate and ethylenediaminetetraacetic acid as molybdenum and sulfur sources, and capping agent respectively. The photocatalyst was characterized by using XRD, FTIR, TEM, SEM, EDS and UV-Vis spectroscopies. Results: SEM result shows that the synthesised sample has a rod-like shape made up of several thin sheets. The XRD result revealed the Mo3S4 nanorod to exist in the Rhombohedral phase. The energy band gap of the sample was calculated to be 2.02 eV. The synthesised Mo3S4 nanorod showed great potential in the removal of both RhB and MB in aqueous solution. 85.46% and 99.78% removals of RhB and MB dyes respectively were achieved in 90 min. Conclusion: It was also observed that the photodegradation of both RhB and MB follows pseudo-first order kinetics, with apparent rate constants of 0.0089 min-1 and 0.0118 min-1 for RhB and MB respectively.


2013 ◽  
Vol 781-784 ◽  
pp. 2129-2132 ◽  
Author(s):  
Yan Wen Gong ◽  
Xue Ni Cheng ◽  
Hong Xun Zhang

Nitrogen doping TiO2was prepared and used to degrade acrolein wastewater under simulated solar irradiation acrylic acid. The results showed that the removal of acrolein, hydroquinone and acrylic acid were 0.73, 0.64, 0.26 after 4 hour degradation by TiO2/UV system. The degradation of acrolein, hydroquinone and acrylic acid using TiO2/UV system followed pseudo first-order kinetics. It results indicated that this proposed method can be useful for the pretreatment acrolein wastewater.


2014 ◽  
Vol 18 (10n11) ◽  
pp. 937-943 ◽  
Author(s):  
Lin Yun ◽  
Ling Zhen ◽  
Zikuan Wang ◽  
Xuefeng Fu

N-dealkylation demonstrates an important biochemical oxidation reaction by cytochrome P450 and other monooxygenases. In this article, catalytic oxidative N-dealkylation of secondary amines was achieved using rhodium(III) tetra (p-sulfonato-phenyl) porphyrin (( TSPP ) Rh III ) in aqueous solution with oxygen as the sole oxidant. Addition of benzaldehyde to trap primary amine product inhibited catalyst deactivation and dramatically increased reaction turnover numbers (TONs). Substrate scope examination suggested the reaction was performed with a preference for bulkier secondary amines. Kinetic study exhibited first-order kinetics with regard of ( TSPP ) Rh III catalyst. Results from the Hammett study gave a ρ value of -1.38, suggesting formation of an iminium ion intermediate in the rate determining step.


Sign in / Sign up

Export Citation Format

Share Document