The DeNOx Characteristics of V/Ti Plate SCR Catalysts

2011 ◽  
Vol 356-360 ◽  
pp. 1712-1715
Author(s):  
Qiang Lu ◽  
Shu Hua Su ◽  
Shi Ye Fen ◽  
Wei Liang Cheng ◽  
Chang Qing Dong

A series of V2O5/WO3/TiO2plate catalysts were prepared via the incipient wetness impregnation method, with the V2O5content of 0.68 wt%, 1.01 wt%, 1.19 wt%, 1.5 wt% and the WO3loading of 4.8 wt%, 6.2 wt%, 7.9 wt%, 9.2 wt%, respectively. Selective catalytic reduction of nitric oxide by ammonia (NH3-SCR) experiments were performed to investigate the effects of the several factors on the performance of the catalysts, including the V2O5, WO3and MoO3content in the catalysts and the O2concentration in the flue gas. The results indicated that as the rising of the V2O5 content, the SCR activity of the V2O5/WO3/TiO2catalysts was firstly increased and then slightly decreased, with the best activity obtained at the V2O5content of 1.19 wt%. As the increasing of the WO3content, the activity was firstly increased slightly and then almost kept constant. Furthermore, the loading of the MoO3on the V2O5/WO3/TiO2plate catalysts would bring negative effects to the catalytic activity. In addition, the capability of the catalysts would slightly increase as the O2concentration rising up to 7%, and then became stable at higher O2concentrations.

2011 ◽  
Vol 71-78 ◽  
pp. 2806-2813
Author(s):  
Jiang Jun Hu ◽  
Qian Ma ◽  
Ling Ouyang ◽  
Xi Chen ◽  
Fu Xing Gan

The selective catalytic reduction of nitric oxide by ethylene was studied over Cu/ZSM-5 catalyst in the temperature range of 200-550°C, in which NO cannot be reduced by ethylene without Cu/ZSM-5 catalyst. Prepared Cu/ZSM-5 catalyst in varies loading as Na/ZSM-5 by the wet impregnation method, and the effect of the catalytic activity was studied in varies fitting temperatures. Several influencing factors, such as the different reaction temperatures, oxygen gas concentration, and Cu2+ concentration were investigated. Cu-Ce-ZSM-5 catalyst was prepared by wet impregnation method and the metallic influence of CeO2 to the catalytic ability was studied.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Liu Yang ◽  
Yue Tan ◽  
Zhongyi Sheng ◽  
Aiyi Zhou

Sodium carbonate (Na2CO3), sodium nitrate (NaNO3), and sodium chloride (NaCl) were chosen as the precursors to prepare the Na salts deposited Mn-Ce/TiO2catalysts through an impregnation method. The influence of Na on the performance of the Mn-Ce/TiO2catalyst for low-temperature selective catalytic reduction ofNOxby NH3was investigated. Experimental results showed that Na salts had negative effects on the activity of Mn-Ce/TiO2and the precursors of Na salts also affected the catalytic activity. The precursor Na2CO3had a greater impact on the catalytic activity, while NaNO3had minimal effect. The characterization results indicated that the significant changes in physical and chemical properties of Mn-Ce/TiO2were observed after Na was doped on the catalysts. The significant decreases in surface areas and NH3adsorption amounts were observed after Na was doped on the catalysts, which could be considered as the main reasons for the deactivation of Na deposited Mn-Ce/TiO2.


2015 ◽  
Vol 1088 ◽  
pp. 569-572
Author(s):  
Zhi Hao Zhang ◽  
Yang Li ◽  
Yun Fang Qi ◽  
Qing Ye ◽  
Shu Lan Ji ◽  
...  

Cu/Na-Sep samples were prepared by the incipient wetness impregnation method. These catalysts were characterized by means of XRF, XRD, and XPS techniques, and their catalytic activities were performed by the SCR of NO with propylene. The results show that the Cu/Na-Sep catalyst exhibited the high performance in the C3H6-SCR of NO. After investigation by XRD and XPS, the result showed that there are Cu2+/Cu+redox species as a reaction activity center over Cu/Na-Sep.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 593 ◽  
Author(s):  
Chen Wang ◽  
Jun Wang ◽  
Jianqiang Wang ◽  
Zhixin Wang ◽  
Zexiang Chen ◽  
...  

To reveal the role of impregnated sodium (Na) ions in Cu/SSZ-13 catalysts, Cu/SSZ-13 catalysts with four Na-loading contents were prepared using an incipient wetness impregnation method and hydrothermally treated at 600 °C for 16 h. The physicochemical property and selective catalytic reduction (SCR) activity of these catalysts were studied to probe the deactivation mechanism. The impregnated Na exists as Na+ on catalysts and results in the loss of both Brönsted acid sites and Cu2+ ions. Moreover, the high loading of Na ions destroy the framework structure of Cu/SSZ-13 and forms new phases (SiO2/NaSiO3 and amorphous species) when Na loading was higher than 1.0 mmol/g. The decreased Cu2+ ions finally transformed into CuxO, CuO, and CuAlOx species. The inferior SCR activity of Na impregnated catalysts was mainly due to the reduced contents of Cu2+ ions at kinetic temperature region. The reduction in the amount of acid sites and Cu2+ ions, as well as copper oxide species (CuxO and CuO) formation, led to low SCR performance at high temperature. Our study also revealed that the existing problem of the Na ions’ effect should be well-considered, especially at high hydrothermal aging when diesel particulate filter (DPF) is applied in upstream of the SCR applications.


RSC Advances ◽  
2018 ◽  
Vol 8 (73) ◽  
pp. 42017-42024 ◽  
Author(s):  
Zhicheng Han ◽  
Qingbo Yu ◽  
Zhijia Xue ◽  
Kaijie Liu ◽  
Qin Qin

Trace amount of Sm-doped Mn-based Zr–Fe polymeric pillared interlayered montmorillonite promotes low temperature catalytic activity in excess oxygen.


2014 ◽  
Vol 1033-1034 ◽  
pp. 90-94 ◽  
Author(s):  
Qi Ying Wang ◽  
Zi Li Liu ◽  
Jun Rong Wu

Different Cu-loading pillared clays catalysts were studied in selective catalytic reduction of NO by propylene. The catalyst prepared by incipient wetness impregnation (Cu/Ti-PILCs) had better catalytic activity and stability than that prepared by ion-exchanged method (Cu-Ti-PILCs). Cu/Ti-PILCs has higher BET surface area than Cu-Ti-PILCs. Pore size distribution analysis and XRD showed that Cu species dispersed well in Cu/Ti-PILCs but formed conglomeration in Cu-Ti-PILCs. TPR showed that Cu2+ species were the main active species on the Cu/Ti-PILCs, which was responsible for the high catalytic activity of catalyst.


1990 ◽  
Vol 29 (7) ◽  
pp. 1431-1435 ◽  
Author(s):  
J. P. Chen ◽  
R. T. Yang ◽  
M. A. Buzanowski ◽  
J. E. Cichanowicz

Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1426
Author(s):  
Marwa Saad ◽  
Agnieszka Szymaszek ◽  
Anna Białas ◽  
Bogdan Samojeden ◽  
Monika Motak

A series of materials based on activated carbon (AC) with copper deposited in various amounts were prepared using an incipient wetness impregnation method and tested as catalysts for selective catalytic reduction of nitrogen oxides with ammonia. The samples were poisoned with SO2 and regenerated in order to analyze their susceptibility to deactivation by the harmful component of exhaust gas. NO conversion over the fresh catalyst doped with 10 wt.% of Cu reached 81% of NO conversion at 140 °C and about 90% in the temperature range of 260–300 °C. The rate of poisoning with SO2 was dependent on Cu loading, but in general, it lowered NO conversion due to the formation of (NH4)2SO4 deposits that blocked the active sites of the catalysts. After regeneration, the catalytic activity of the materials was restored and NO conversion exceeded 70% for all of the samples.


Sign in / Sign up

Export Citation Format

Share Document