Effect of MgO Nano Particle on Mechanical Property and Microstructure of ZTA Ceramic Composite

2011 ◽  
Vol 364 ◽  
pp. 450-454 ◽  
Author(s):  
Ahmad Zahirani Ahmad Azhar ◽  
Mohamad Hasmaliza ◽  
Manimaran Ratnam ◽  
Zainal Arifin Ahmad

The mechanical properties and microstructure of zirconia-toughened-alumina ceramic composite doped with nanoparticle of MgO is investigated. The nanoMgO weight percent was varied from 0.3 wt % to 1.3 wt %. Each batch of composition was mixed using ultrasonic cleaner and mechanical stirrer, uniaxially pressed and sintered at 1600 °C for 4 h in pressureless conditions. Analysis of bulk density, Vickers hardness and microstructural observation has been carried out. Results of Vickers hardness increased linearly with addition of more nanoMgO until a certain composition. Maximum Vickers hardness obtained was 1740HV with 1.1 wt % MgO. Furthermore, microstructural observations show that the Al2O3 grain size depends on the particle size of MgO, and is directly related to its hardness property.

2015 ◽  
Vol 41 (3) ◽  
pp. 3961-3967 ◽  
Author(s):  
Hanisah Manshor ◽  
Suriyana Md Aris ◽  
Ahmad Zahirani Ahmad Azhar ◽  
Ezzat Chan Abdullah ◽  
Zainal Arifin Ahmad

2012 ◽  
Vol 620 ◽  
pp. 35-39 ◽  
Author(s):  
Ahmad Zahirani Ahmad Azhar ◽  
Nik Akmar Rejab ◽  
Mohamad Hasmaliza ◽  
Mani Maran Ratnam ◽  
Zainal Arifin Ahmad

Fracture toughness and phases of ceramic composites produced from alumina, yttria stabilized zirconia and chromia oxide system was investigated. The Cr2O3weight percent was varied from 0 wt% to 1.0 wt%. Each batch of composition was mixed, uniaxially pressed 13mm diameter and sintered at 1600 C for 4 h in pressureless conditions. Studies on on their mechanical and physical properties such as Vickers hardness and fracture toughness were carried out. Results show that an addition of 0.6 wt% of Cr2O3produces the best mechanical properties. Results of the highest fracture toughness is 4.73 MPa.m1/2,


2016 ◽  
Vol 840 ◽  
pp. 34-38 ◽  
Author(s):  
Hanisah Manshor ◽  
Abdul Wahid Ramli ◽  
Ahmad Zahirani Ahmad Azhar ◽  
Ezzat Chan Abdullah ◽  
Zainal Arifin Ahmad

Zirconia toughened alumina (ZTA) has good mechanical properties and widely used in cutting insert application. Although the ZTA is well known of its good mechanical properties, its still can be improved in order to produce better properties. It can be done by adding additives as reinforcement such as magnesium oxide (MgO), cerium oxide (CeO), titania (TiO2) and chromia (Cr2O3). The effect of TiO2-Cr2O3 addition on the physical properties of ZTA were investigated in this study. The composition of TiO2 was varied from 0 wt% to 3.5 wt% while Cr2O3 was fixed at 5 wt%. The starting powder materials were mixed by wet mixing for 30 minutes in acetone. Then the powder mixtures were hydraulically pressed at 260 MPa. The green pellets were sintered at 1600°C for 1 hour using an electrical furnace in presureless condition. The results were characterized by XRD, density, and also Vickers hardness. The ZTA-Cr2O3-TiO2 ceramic composite achieved the highest density of 4.1 g/cm3 and Vickers hardness of 1919 HV prior to the addition of 2.0 wt% TiO2. Therefore, it can be decisively concluded that the addition of Cr2O3-TiO2 does affected the properties of ZTA.


2013 ◽  
Vol 589-590 ◽  
pp. 590-593 ◽  
Author(s):  
Min Wang ◽  
Jun Zhao

In order to investigate the effects of TiN content on Al2O3/TiN ceramic material (ATN), the ATN ceramic materials were prepared of TiN content in 30%, 40%, 50%, 60% in the condition of hot press sintering. The sintering temperature is 1700°C, the sintering press is 32MPa, and the holding time are 5min, 10min, 15min. The effects of TiN content on mechanical properties and microstructure of ATN ceramic materials were investigated by analyzing the bending strength, hardness, fracture toughness. The results show that ATN50 has the best mechanical property, its bending strength is 659.41MPa, vickers hardness is 13.79GPa, fracture toughness is 7.06MPa·m1/2. It is indicated that the TiN content has important effect on microstructure and mechanical properties of ATN ceramic materials.


2005 ◽  
Vol 287 ◽  
pp. 489-494
Author(s):  
Kyeon Hwan Park ◽  
Tatsuya Hinoki ◽  
Akira Kohyama

Irradiation damage produced by neutrons or energetic particles lead to changes of physical- and mechanical-properties of SiC. Radiation hardening and fracture toughness changing of SiC were clarified by indentation method previously. However, the mechanism studies have received little alteration. The purpose of this study is to improve the understanding of the mechanisms of mechanical property changes under irradiation. In this paper, the microstructural observation beneath and near an indentation will be used to infer mechanisms of radiation hardening and toughening. Indenting polycrystalline SiC creates deformation and cracking in the plastically deformed region. In the case of irradiated SiC, however, small-sized deformation zone was observed below contact indent, which resulted in the restricted size of residual impression. Additionally, the indentation cracks showed complex propagation behaviors such as deflecting, branching and microcracking.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Kunal Ghosh ◽  
Subhrojyoti Mazumder ◽  
Harish Hirani ◽  
Poulomi Roy ◽  
Nilrudra Mandal

Abstract An innovative approach was adopted for fabricating zirconia toughened alumina (ZTA)-MoS2 self-lubricating ceramic composites with the inclusion of hydrothermally synthesized nano MoS2 through the micropores of perforated ZTA ceramics. This method avoided the exposure of MoS2 in high-temperature environment due to its in-sensitiveness during traditional sintering techniques. Different weight percentages (wt%: 0, 5, 10, and 15) of graphite were incorporated to produce porous ZTA ceramics with the help of cold press sintering followed by insertion of nano MoS2 into the matrices. Best tribological characteristics were obtained with 10 wt% graphite-ZTA-MoS2 specimen which offered an improvement of ∼66% in coefficient of friction (COF) and ∼96% in specific wear rate when dry sliding tests were carried out against silicon nitride (Si3N4) in high vacuum (5.0 × 10−4 mbar). Nano MoS2 was sheared off at the contacting interface during sliding under load which showed a good tribological characteristics of the composite. Delamination was found as the dominating wear mechanism in ZTA-MoS2 composites during wear tests.


2021 ◽  
Vol 1030 ◽  
pp. 3-10
Author(s):  
Teow Hsien Loong ◽  
Ananthan Soosai ◽  
Suresh Muniandy

The effect of doping small amounts of Magnesium Oxide ranging between 0 to 1 vol% on Zirconia Toughened Alumina (ZTA) composites which is one of main biomaterial used for production of total hip arthroplasty were investigated. The samples were produced via conventional two-stage sintering with T1 varies between 1450°C and 1550°C with heating rate of 20°C/min. The samples were then rapid cooled to T2 set at 1400°C with holding time of 12 hours. The microstructural and mechanical properties of the two-stage sintered ZTA are then investigated to determine the feasibility of MgO addition. Combination of two-stage sintering at T1 above 1500 and also small amount of MgO up to 0.5 vol% were shown to have positive effect on ZTA which exhibited improvement on its grain size, mechanical properties such as Vickers hardness, Young’s modulus and fracture toughness compared to undoped ZTA composites. The sample with 0.5 vol% MgO addition sintered at T1 of 1500°C and T2 1400°C was able to achieve Vickers hardness of 19.6 GPa, Young’s modulus of 408 GPa and fracture toughness of 6.8 MPam1/2 without significant grain growth compared to undoped ZTA composites.


2013 ◽  
Vol 651 ◽  
pp. 289-294 ◽  
Author(s):  
Alokesh Pramanik ◽  
Guy Littlefair

Nanoparticle reinforced metal matrix possess much better mechanical properties over microparticle reinforced metal matrix composites as well as corresponding monolithic matrix materials. However, the fabrication methods of nanoparticle reinforced metal matrix composites are complex and expensive. This paper investigates and discusses the mechanisms of all the fabrication process, such as powder metallurgy, liquid metallurgy, compocasting and hybrid methods, available in the literature. This gives an insight on challenges associated with different processes and ways to improve the fabrication processes. It is found that modified traditional fabrication processes are mainly applied for these materials. The main problem is to achieve reasonably uniform distribution of nanoparticle reinforcement in the methods other than mechanical alloying when the volume or weight percent of reinforcement is higher (> 1%).


Sign in / Sign up

Export Citation Format

Share Document