Research on Dynamic Performance of Concrete-Filled Steel Tubular Trussed Arch Bridge under Earthquake

2011 ◽  
Vol 368-373 ◽  
pp. 1222-1226
Author(s):  
Xian Li Yan ◽  
Qing Ning Li ◽  
Chang Gao ◽  
Li Ying Wang

Taking a double span- swallows-type CFST (concrete-filled steel tubular) trussed arch bridge as an engineering example; a spatial finite element analysis model is established to calculate its dynamic characteristic. The seismic responses in different earthquake input directions are calculated based on the elastic dynamic time history method. Results show that: the out-plane stability of the bridge is weaker than that of the in-plane; the torsion resistance ability of the bridge deck is smaller than that of the arch ribs; the axial force-Fx, shear force-Fz and bending moment-My of the bridge are mainly controlled by longitudinal seismic forces, whereas the shear forces-Fy, bending moment-Mz and torque-Mx are mainly controlled by transverse seismic forces; vertical seismic force has a considerable effect on internal forces of the bridge, so it can not be ignored in seismic design.

2011 ◽  
Vol 378-379 ◽  
pp. 332-336
Author(s):  
Yong He Li ◽  
Ai Rong Liu ◽  
Qi Cai Yu ◽  
Pan Tang ◽  
Fang Jie Cheng

With an example of steel pipe concrete leaning-type arch bridge, space truss system Finite Element Analysis model is constructed using the Ruiz-Penzien random seismic vibration power spectrum model. The impact of inclined arch rib angle and the number of cross brace between main and stable arch ribs on the seismic internal force response under lateral random seismic excitation is also studied in this research. Research finding shows, the in-plane bending moment of main arch rib gradually increases with increasing stable arch rib angle and cross brace, whereas the out-of-plane bending moment and axial force display a decreasing trend. In general, this indicates that increasing stable arch rib angle and number of cross brace improves the lateral aseismatic performance of leaning-type arch bridge.


2019 ◽  
Vol 2 (2) ◽  
pp. 1
Author(s):  
Xiaojun Yuan ◽  
Yanmu Qu ◽  
Jinlong Liu ◽  
Kailin Wei ◽  
Haifeng Zong

In order to find out the dynamic characteristics of a steel frame structure project in the 8 degree (0.3g) area, the artificial wave, Taft wave and El Centro wave were input by using the finite element analysis software ANSYS. The dynamic time-history analysis of the structure shows the dynamic performance of the structure under the frequent earthquakes and rare earthquakes.


2021 ◽  
Vol 293 ◽  
pp. 02010
Author(s):  
Weisheng Wang ◽  
Jilin Wang

According to the geometric figure of three-leaf rose curve, this paper puts forward a flying-bird type cable-stayed arch bridge with three-leaf rose curve shaped CFST arch rib, which has beautiful appearance and one bridge leads to three banks.The space cables are set between the three-leaf rose linear space arch ribs to resist negative bending moment, and the tie cables are set between the arch feet to resist positive bending moment. On the inclined pylon at the tail of the flying-bird type cable-stayed arch bridge, the stay-cables are arranged to balance the arch thrust, and the suspension-cables are arranged on the three leaf rose linear spatial arch ribs to hang the three fork bridge deck.The flying-bird type cable-stayed arch bridge with three-leaf rose linear CFST arch rib adopts spatial cable structure system, which has good structural stability.Combined with the actual project, the engineering parameters are designed, the Midas finite element analysis model is established, the internal force analysis and modal analysis are carried out, and the rationality of flying-bird type cable-stayed arch bridge with three-leaf rose linear CFST arch rib is verified.


2013 ◽  
Vol 353-356 ◽  
pp. 979-983
Author(s):  
Dong Zhang ◽  
Jing Bo Su ◽  
Hui De Zhao ◽  
Hai Yan Wang

Due to the upgrade and reconstruct of a high-piled wharf, the piling construction may cause the damage of the large diameter underground pipe of a power plant nearby. For this problem, a dynamic time-history analysis model was established using MIDAS/GTS program. Based on the analysis of the pile driving vibration and its propagation law, some parameters, such as the modulus of the soil, the Poissons ratio of soil, the action time of vibration load and the damping ratio of the soil that may have an effect on the response law of the soil, were studied. The study results not only serve as an important inference to the construction of this case, but also accumulate experience and data for other similar engineering practices.


2018 ◽  
Vol 8 (8) ◽  
pp. 1243 ◽  
Author(s):  
Iman Mohseni ◽  
Hamidreza Lashkariani ◽  
Junsuk Kang ◽  
Thomas Kang

This study assessed the structural performance of reinforced concrete (RC) arch bridges under strong ground motion. A detailed three-dimensional finite element model of a 400 m RC arch bridge with composite superstructure and double RC piers was developed and its behavior when subjected to strong earthquakes examined. Two sets of ground motion records were applied to simulate pulse-type near- and far-field motions. The inelastic behavior of the concrete elements was then evaluated via a seismic time history analysis. The concept of Demand to Capacity Ratios (DCR) was utilized to produce an initial estimate of the dynamic performance of the structure, emphasizing the importance of capacity distribution of force and bending moment within the RC arch and the springings and piers of the bridge. The results showed that the earthquake loads, broadly categorized as near- and far-field earthquake loads, changed a number of the bridge’s characteristics and hence its structural performance.


2011 ◽  
Vol 90-93 ◽  
pp. 862-868
Author(s):  
Qi Ming Wu ◽  
Dang Qi Yang ◽  
Fei Cui ◽  
Xiao Wei Yi ◽  
Rui Juan Jiang

Hangers in through arch bridges are important components since they suspend the bridge deck from the arch ribs. Local damage at a hanger may lead to progressive damage of various components in the arch bridge or even progressive collapse of the bridge. In this paper, the conventional design of double-hangers in through arch bridges is reviewed. Then a new approach to design the double-hangers is put forward. The suitability and robustness of this approach is then verified by a numerical simulation of a real through arch bridge. The impact effects induced by local hanger fracture on other structural members are simulated by dynamic time-history analyses. The new approach to design the hangers for through arch bridges is shown to improve the structural robustness. With the application of the new way put forward here, when one or more hangers are damaged to fail, the through arch bridge will not be endangered and will still maintain the overall load-bearing capacity during an appropriate length of time to allow necessary emergency measures to be taken, which illustrates the leading principle of structural robustness well.


2017 ◽  
Vol 44 (8) ◽  
pp. 661-673 ◽  
Author(s):  
J. Beauchamp ◽  
P. Paultre ◽  
P. Léger

This paper presents a simple method based on modal response spectrum analysis to compute internal forces in structural elements belonging to gravity framing not part of the seismic force resisting system (SFRS). It is required that demands on these gravity load resisting system (GLRS) be determined according to the design displacement profile of the SFRS. The proposed new method uses the fact that if the linear stiffness properties of the GLRS not part of the SFRS have negligible values compared to those of the SFRS, only the latter will provide lateral resistance. Displacements of the GLRS then correspond to those of the SFRS alone. The new method is illustrated by computing the seismic responses of a symmetric and an asymmetric multi-storey reinforced concrete building. These results are compared to those obtained from the application of the simplified analysis method proposed in the Canadian standard for the design of concrete structures. Nonlinear time history analyses are also performed to provide a benchmark for comparison. Results show that the new method can predict shear and bending moment in all members at once with ease. Therefore, this new simplified method can effectively be used to predict seismic forces in elements not considered part of the SFRS.


2013 ◽  
Vol 427-429 ◽  
pp. 90-93 ◽  
Author(s):  
Wen Qing Wang

Based on the principle of orthogonal test, the optimization model of sunflower shaped arch bridge scheme was set up. The five key design parameters were selected as the main factors. The four computation index, which reflect mechanical performance, were selected as analytical objects. The 16 orthogonal experiment schemes were arranged with four levels orthogonal table . The curves of the factors to the index were obtained from the mechanical response under dead load and live load through the finite element analysis model. By the range analysis method, the influential levels of the factors to the index were obtained from the result of the test , and the factor optimizatuion level of the factors was determined to further optimize the layout scheme of the sunfloawer shaped arch bridge.


2011 ◽  
Vol 105-107 ◽  
pp. 818-822
Author(s):  
Xiao Fei Teng ◽  
Si Yang Chen ◽  
Bin Luo

To make a top local adding stories of “L” flat facade irregular frame structure with good resistance to twist and integrity, can better satisfy the requirements of local seismic fortification intensity,using metal damper to this after-adding-stories framework model for processing. Using SAP2000 finite element analysis software modeling and in its install metal damper dynamic time-history analysis before and after. Results show that the structure using metal consumption technology in consume earthquake input energy at the same time can enhance structure rigid and floor wrest resistant and strengthen the lateral stiffness integral structure seismic performance.


Sign in / Sign up

Export Citation Format

Share Document