Novel Hanger Design to Improve the Robustness of Through Arch Bridges

2011 ◽  
Vol 90-93 ◽  
pp. 862-868
Author(s):  
Qi Ming Wu ◽  
Dang Qi Yang ◽  
Fei Cui ◽  
Xiao Wei Yi ◽  
Rui Juan Jiang

Hangers in through arch bridges are important components since they suspend the bridge deck from the arch ribs. Local damage at a hanger may lead to progressive damage of various components in the arch bridge or even progressive collapse of the bridge. In this paper, the conventional design of double-hangers in through arch bridges is reviewed. Then a new approach to design the double-hangers is put forward. The suitability and robustness of this approach is then verified by a numerical simulation of a real through arch bridge. The impact effects induced by local hanger fracture on other structural members are simulated by dynamic time-history analyses. The new approach to design the hangers for through arch bridges is shown to improve the structural robustness. With the application of the new way put forward here, when one or more hangers are damaged to fail, the through arch bridge will not be endangered and will still maintain the overall load-bearing capacity during an appropriate length of time to allow necessary emergency measures to be taken, which illustrates the leading principle of structural robustness well.

2011 ◽  
Vol 199-200 ◽  
pp. 1324-1330
Author(s):  
Rui Juan Jiang ◽  
Yi Yan Chen ◽  
Qi Ming Wu ◽  
Xiao Wei Yi

It is well-known that in modern through arch bridges the suspenders are important components since they connect the bridge deck and the arch ribs. When the suspender break happens, the other components of the through arch bridge will be impacted successively. Sometimes, the collapse of bridge deck may be induced by the possible suspender break. In this paper, the impact effect on the remaining components of the through arch bridge due to the suspender break is studied and obtained by appropriate simulation and time-history analysis using the comprehensive commercial software ANSYS, which is based on a real through arch bridge. The study in this paper will be helpful to carry out the reasonable design of the through arch bridge.


2010 ◽  
Vol 163-167 ◽  
pp. 2564-2570
Author(s):  
Bin Yang ◽  
Jin Hua Huang ◽  
Chun Jiao Lin ◽  
Xing Kun Wen ◽  
Mao Jun Liu

Based on the investigation of a constructing dumbbell-shaped concrete-filled steel arch bridge in Nanning, Guangxi, continuous on-site experimental researches on temperature field and its effects were carried out under the influence of hydration heat of concrete in the molding process of concrete-filled dumb-bell steel tubular arch bridge. On the basis of measured data, analysis on time-history law of temperature field and its effect under the impact of hydration heat of concrete of composite structure of concrete-filled steel tubes is made. The results reveal that temperature variation of hydration heat of the concrete within the steel tube is showed as follows: “Temperature up-continuous high temperature-temperature down-balance”. The structural temperature field, generated under the effect of hydration hea in the process of molding arch rib, is nonlinear temperature field. Concrete hydration temperature effect of crown section basically changes with temperature field simultaneously, while the residual strain of arch foot section is relatively large; hydration temperature effect of L/4 Section emerges peak fluctuations in concrete pouring process and finally levels off. Hydration temperature field of concrete has a great effect on crown section, which makes the steel tube continuously withstand the tension and compression alternatively, while the influence on the arch foot steel tube is not obvious. Surface strains of L/8, L/4, 3L/8 sections of steel tube transit from single-wave peak to dual-wave peak and finally turn into a single wave peak.


2015 ◽  
Vol 77 (11) ◽  
Author(s):  
B.M. Hutapea ◽  
M. Asrurifak ◽  
Hendriyawan Hendriyawan ◽  
Masyhur Irsyam

It is not the earthquake but the collapse of the building and infrastructure that will cause the damage and the loss of human lives. To mitigate these hazards, the building and infrastructure need to be designed such that will not collapse due to earthquake. This paper presents the procedure for generating time histories at ground surface for Jakarta area. Required data to generate these modified time histories were extracted from the Team for Revision of Seismic Hazard Maps of Indonesia 2010. The results are used as input motions in dynamic time history analysis for predicting earthquake design loads for infrastructures, such as bridges such that those structures can be designed to bear the impact of an earthquake and prevent collapse


2012 ◽  
Vol 204-208 ◽  
pp. 1976-1979
Author(s):  
Hang Sun ◽  
Xiao Jian Han ◽  
Xiu Yun Gao

The calculation formula of the vertical fundamental frequency of arch bridge has been given in current design codes, in which the rise-span ratio is the only variable on condition that the structure mass and stiffness are known. However, the dynamic properties of long-span concrete filled steel tube arch bridges have their own characteristics, which are influenced by a series of factors. Thus this article establishes a space model of a concrete-filled steel tube arch bridge. By analyzing the main design parameters’ influence on the structure dynamic properties, including rise-span ratios, arch-axis coefficient and wide-span ratios, some of conclusions has been made, which can be used for further research of the impact effect and earthquake dynamic response, and provide the necessary basis for the dynamic design of bridges of this kind


2016 ◽  
Vol 249 ◽  
pp. 209-214
Author(s):  
Vojtěch Kolínský ◽  
Jan L. Vítek

The paper deals with evaluation of experimental data collected during the Oparno arch bridge construction and with subsequent analysis of the construction process and long-term behavior with regard to rheological properties of concrete. The Oparno valley bridge is composed of two separate concrete arch structures with spans of 135 metres (this is currently the second longest span of concrete arch bridge in the Czech Republic). It was built using cantilever casting technology with temporary cable-stays and auxiliary pylons. The data recorded for this study include detailed geodetic measurement of the bridge structure during construction, along with measured strains and temperatures in the arches. Most of the data was measured during the bridge construction in 2008 and 2009. Data significant for long term behavior of structure are still being collected. Verification of different concrete material models and their suitability for design of arch bridges built by free cantilevering will be a main result of the analysis. On the basis of a detailed comparison of numerical results and measured deflections, strains and temperatures, it is possible to quantify the impact of rheological properties of the material (or their individual input parameters) on the resulting structural behavior. Unlike previous research, the examined structure is made of reinforced concrete (not prestressed) and consists of compact solid section and in the final state it is mainly in compression.


2019 ◽  
Vol 15 (1) ◽  
pp. 47-53
Author(s):  
Prakash Gaire ◽  
Ma Hongwang

Nepal Himalayas is one of the most seismic vulnerable zones. The active tectonic action impels the assessment of structures in possible seismic hazards including the bridge structures. This paper presents the impact of the 2015 Gorkha earthquake on the existing reinforced concrete arch bridge at Chobhar, Nepal. A three-dimensional model of the bridge is constructed using Open Sees platform. Nonlinear pushover analysis was performed to find the displacement capacity of the bridge. Ground motion from the main shock of the 2015 Gorkha earthquake is used in this study. Nonlinear time history analysis is performed with three orthogonal ground motions applied in the transverse, longitudinal and vertical direction of the bridge. The study investigates the safety of the bridge scaling up the ground motion to potential PGA in Nepal Himalayas; the result demonstrated the necessity of retrofit to ensure the safety level. Moreover, the horizontal seismic force obtained from the time history analysis is compared with the force obtained from the design code of the bridge. Also, the design force as per the present code (revised code) is presented.


2012 ◽  
Vol 178-181 ◽  
pp. 2412-2417
Author(s):  
Rui Juan Jiang ◽  
Qi Ming Wu ◽  
Yi Yan Chen ◽  
Xiao Wei Yi ◽  
Jun Tu

In EN1991-1-7 Eurocode 1: Part 1-7 Accidental Actions structural robustness is defined as ‘the ability of a structure to withstand events like fire, explosions, impact or consequences of human error without being damaged to an extent disproportionate to the original cause’. Accordingly, the principle of structural robustness is that local damage is acceptable, provided that it will not endanger the structure and that the overall load-carrying capacity is maintained during an appropriate length of time to allow the necessary emergency measures to be taken. For different structures the practical ways to achieve robustness are different. Lots of through arch bridges with hangers have been built throughout the world. However, the structural collapse may happen due to the hanger's damage or failure if the bridge is not designed appropriately. In this paper, the structural robustness of the through arch bridges with vertical hangers are discussed and verified by an example. Based on this study, a few practical suggestions are put forward to achieve the structural robustness for the future through arch bridges' design.


2011 ◽  
Vol 368-373 ◽  
pp. 1222-1226
Author(s):  
Xian Li Yan ◽  
Qing Ning Li ◽  
Chang Gao ◽  
Li Ying Wang

Taking a double span- swallows-type CFST (concrete-filled steel tubular) trussed arch bridge as an engineering example; a spatial finite element analysis model is established to calculate its dynamic characteristic. The seismic responses in different earthquake input directions are calculated based on the elastic dynamic time history method. Results show that: the out-plane stability of the bridge is weaker than that of the in-plane; the torsion resistance ability of the bridge deck is smaller than that of the arch ribs; the axial force-Fx, shear force-Fz and bending moment-My of the bridge are mainly controlled by longitudinal seismic forces, whereas the shear forces-Fy, bending moment-Mz and torque-Mx are mainly controlled by transverse seismic forces; vertical seismic force has a considerable effect on internal forces of the bridge, so it can not be ignored in seismic design.


2018 ◽  
Vol 8 (9) ◽  
pp. 1686 ◽  
Author(s):  
Wenwei Yang ◽  
Chao Bao ◽  
Xiaotong Ma ◽  
Shangrong Zhang

The qualitative analysis for structural robustness study subjected to severe earthquakes is unable to meet engineering requirements, and a quantitative analysis method for structural robustness is needed to be proposed. The existing analysis methods, such as Incremental Dynamic Analysis Method and Pushover method, only study the response of the structure directly from the macroscopic view, rather than focusing on the response of a single component on the structure. Especially for the construction of isolated structure, the impact of accidental bearing failure on the isolated structure and the impact of progressive collapse cannot be considered. In this paper, based on the Alternative Load Path Method, the quantitative analysis method for structural robustness analysis under earthquake is proposed. The structural robustness of some different vertical irregular isolated structures under different earthquakes is studied.


2013 ◽  
Vol 361-363 ◽  
pp. 1418-1421
Author(s):  
Yi Zheng

This paper conducts an analytical research on the use of bridges, and discusses how the vibration of bridges is affected by the healthiness of piers. Meanwhile, Impact Vibration Test Method is introduced, by which the modal parameter of bridges can be tested. A lot of dynamic tests of piers are conducted by using this method. By analyzing data and identifying modal information of piers, this paper made a conclusion on the general law of the impact each parameter has on characteristic frequency of the piers. The bridge finite-elemental model is constructed according to the actual structure of piers, the impact vibration test load stimulated, then computed and analyzed with the dynamic time-history method. Bases on the comparison between test result and frequency of Time-domain transverse velocity received the results of the analyses identify the frequency spectrums, the validity of the Impact Vibration Test Method is verified.


Sign in / Sign up

Export Citation Format

Share Document