Effect of Freeze-Thaw on the Concrete Pore Structure Features

2011 ◽  
Vol 368-373 ◽  
pp. 361-364 ◽  
Author(s):  
Feng Qu ◽  
Di Tao Niu

Under action of repeated freeze-thaw cycles, different changes of pore structure features has occurred in different varieties of concrete.In this study, the average pore size of concrete and total porosity was discussed especially with the trends.Based on this, the gas diffusion model and the chloride ion diffusion model in concrete was also discussed with the pore structure,which indicated that the freeze-thaw damage of concrete pore structure will have a greater impact to the durability of concrete, and so the life of concrete structures would be affected.

2014 ◽  
Vol 488-489 ◽  
pp. 620-624
Author(s):  
Long Zhou ◽  
Xu Liang Hou ◽  
Zhong Ping Wang

The pore structure of cement-based materials is closely related to the freeze-thaw resistance durability. And this paper focused on nanometer pores to verify the connection of freeze-thaw cycles in the nanometer pores with the structure deterioration and to explore the stress in the pore wall during the freeze-thaw process. And BET method was adopted to analyze the pore structure of the cement and results indicated the changing trends of parameters such as the pore volume, average pore size and surface area of specimens. Moreover, pore size distribution presented prominent fluctuations of pore sizes in the range of 0 ~ 20 nm, while the changes on the scale of 20 ~ 100 nm were limited.


2011 ◽  
Vol 689 ◽  
pp. 336-342 ◽  
Author(s):  
Wei Bo Huang ◽  
Xu Dong Liu ◽  
Ping Lu ◽  
Jing Zhang

The deterioration of coated concrete subjected to co-action of freeze-thaw cycles-NaCl solution immersion double factors exposure was investigated in this study. Adhesion, chloride content and resistance of chloride ion diffusivity of two types of polyaspartic ester polyurea coated concrete were analyzed. Test results showed that the adhesion of QF-1 (PAE-b-H12MDI prepolymer H66) and QF-2 (PAE-b-H12MDI prepolymer H62) coated concrete reduced about 5% respectively which kept excellent under the double factors exposure after 200, 300 days and 25, 50 times of cycles. The degradation process of coated concrete simultaneously exposed to co-action exposure was significantly accelerated. In co-action exposure tests, the average chloride ion content of coated concrete increased about 33% and 87% after 25 and 50 times of cycles compared with single NaCl solution immersion exposure; the chloride ion diffusion coefficient of concrete substrate increased with the increase of exposure time and freeze-thaw cycles. Freeze-thaw cycles results showed a severe influence on chloride ion diffusion and permeation of surface protection coating of concrete. Research also showed that the chloride ion diffusion of coated concrete subjected to the co-action of freeze-thaw cycles-NaCl solution was coincided with the Fick’s second law.


2013 ◽  
Vol 671-674 ◽  
pp. 1652-1656 ◽  
Author(s):  
Feng Qu ◽  
Di Tao Niu

With repeated action of freeze-thaw cycles, chloride ion diffusion characteristics changed obviously in concrete structure. In the study, the chloride ion diffusion coefficient and the surface chloride ion concentration were discussed especially with the trends. Based on these facts, the chloride diffusion model and the improved model of concrete was also discussed based on its time-dependent characteristics, which indicated that the freeze-thaw damage of concrete would have a greater impact to the chloride transport course in the concrete, and so on the service life of concrete structures would be affected.


2012 ◽  
Vol 14 (1) ◽  
pp. 332-335
Author(s):  
Ditao Niu ◽  
Chengfang Yuan ◽  
Da Ming Luo

2017 ◽  
Vol 54 (3) ◽  
pp. 181-201
Author(s):  
Rebecca Johnson ◽  
Mark Longman ◽  
Brian Ruskin

The Three Forks Formation, which is about 230 ft thick along the southern Nesson Anticline (McKenzie County, ND), has four “benches” with distinct petrographic and petrophysical characteristics that impact reservoir quality. These relatively clean benches are separated by slightly more illitic (higher gamma-ray) intervals that range in thickness from 10 to 20 ft. Here we compare pore sizes observed in scanning electron microscope (SEM) images of the benches to the total porosity calculated from binned precession decay times from a suite of 13 nuclear magnetic resonance (NMR) logs in the study area as well as the logarithmic mean of the relaxation decay time (T2 Log Mean) from these NMR logs. The results show that the NMR log is a valid tool for quantifying pore sizes and pore size distributions in the Three Forks Formation and that the T2 Log Mean can be correlated to a range of pore sizes within each bench of the Three Forks Formation. The first (shallowest) bench of the Three Forks is about 35 ft thick and consists of tan to green silty and shaly laminated dolomite mudstones. It has good reservoir characteristics in part because it was affected by organic acids and received the highest oil charge from the overlying lower Bakken black shale source rocks. The 13 NMR logs from the study area show that it has an average of 7.5% total porosity (compared to 8% measured core porosity), and ranges from 5% to 10%. SEM study shows that both intercrystalline pores and secondary moldic pores formed by selective partial dissolution of some grains are present. The intercrystalline pores are typically triangular and occur between euhedral dolomite rhombs that range in size from 10 to 20 microns. The dolomite crystals have distinct iron-rich (ferroan) rims. Many of the intercrystalline pores are partly filled with fibrous authigenic illite, but overall pore size typically ranges from 1 to 5 microns. As expected, the first bench has the highest oil saturations in the Three Forks Formation, averaging 50% with a range from 30% to 70%. The second bench is also about 35 ft thick and consists of silty and shaly dolomite mudstones and rip-up clast breccias with euhedral dolomite crystals that range in size from 10 to 25 microns. Its color is quite variable, ranging from green to tan to red. The reservoir quality of the second bench data set appears to change based on proximity to the Nesson anticline. In the wells off the southeast flank of the Nesson anticline, the water saturation averages 75%, ranging from 64% to 91%. On the crest of the Nesson anticline, the water saturation averages 55%, ranging from 40% to 70%. NMR porosity is consistent across the entire area of interest - averaging 7.3% and ranging from 5% to 9%. Porosity observed from samples collected on the southeast flank of the Nesson Anticline is mainly as intercrystalline pores that have been extensively filled with chlorite clay platelets. In the water saturated southeastern Nesson Anticline, this bench contains few or no secondary pores and the iron-rich rims on the dolomite crystals are less developed than those in the first bench. The chlorite platelets in the intercrystalline pores reduce average pore size to 500 to 800 nanometers. The third bench is about 55 ft thick and is the most calcareous of the Three Forks benches with 20 to 40% calcite and a proportionate reduction in dolomite content near its top. It is also quite silty and shaly with a distinct reddish color. Its dolomite crystals are 20 to 50 microns in size and partly abraded and dissolved. Ferroan dolomite rims are absent. This interval averages 7.1% porosity and ranges from 5% to 9%, but the pores average just 200 nanometers in size and occur mainly as microinterparticle pores between illite flakes in intracrystalline pores in the dolomite crystals. This interval has little or no oil saturation on the southern Nesson Anticline. Unlike other porosity tools, the NMR tool is a lithology independent measurement. The alignment of hydrogen nuclei to the applied magnetic field and the subsequent return to incoherence are described by two decay time constants, longitudinal relaxation time (T1) and transverse relaxation time (T2). T2 is essentially the rate at which hydrogen nuclei lose alignment to the external magnetic field. The logarithmic mean of T2 (T2 Log Mean) has been correlated to pore-size distribution. In this study, we show that the assumption that T2 Log Mean can be used as a proxy for pore-size distribution changes is valid in the Three Forks Formation. While the NMR total porosity from T2 remains relatively consistent in the three benches of the Three Forks, there are significant changes in the T2 Log Mean from bench to bench. There is a positive correlation between changes in T2 Log Mean and average pore size measured on SEM samples. Study of a “type” well, QEP’s Ernie 7-2-11 BHD (Sec. 11, T149N, R95W, McKenzie County), shows that the 1- to 5-micron pores in the first bench have a T2 Log Mean relaxation time of 10.2 msec, whereas the 500- to 800-nanometer pores in the chlorite-filled intercrystalline pores in the second bench have a T2 Log Mean of 4.96 msec. This compares with a T2 Log Mean of 2.86 msec in 3rd bench where pores average just 200 nanometers in size. These data suggest that the NMR log is a useful tool for quantifying average pore size in the various benches of the Three Forks Formation.


2013 ◽  
Vol 857 ◽  
pp. 105-109
Author(s):  
Xiu Hua Zheng ◽  
Shu Jie Song ◽  
Yong Quan Zhang

This paper presents an experimental study on the permeability and the pore structure of lightweight concrete with fly ash, zeolite powder, or silica fume, in comparison to that of normal weight aggregate concrete. The results showed that the mineral admixtures can improve the anti-permeability performance of lightweight aggregate concrete, and mixed with compound mineral admixtures further more. The resistance to chloride-ion permeability of light weight concrete was higher than that of At the same strength grade, the anti-permeability performance of lightweight aggregate concrete is better than that of normal weight aggregate concrete. The anti-permeability performance of LC40 was similar to that of C60. Mineral admixtures can obviously improve the pore structure of lightweight aggregate concrete, the total porosity reduced while the pore size decreased.


2018 ◽  
Vol 23 (1) ◽  
pp. 287-294 ◽  
Author(s):  
Tao Yang ◽  
Bowen Guan ◽  
Guoqiang Liu ◽  
Yanshun Jia

2015 ◽  
Vol 77 (32) ◽  
Author(s):  
Nurazuwa Md Noor ◽  
H. Hamada ◽  
Y. Sagawa ◽  
D. Yamamoto

This paper present the effect of crumb rubber on its ability to produce concrete with structural strength when it was used directly from the plant without any treatment process. Crumb rubber was added as fine aggregates at 0%, 10%, 15% and 20% of sand volume meanwhile silica fume was added at 10% by cement weight. Three main series of concrete namely rubberized concrete with water-to-cement ratio of 50% and 35% was design and development of compressive strength was observed from day 7 until 91 days. Also, effectiveness of crumb rubber under flexural strength and splitting tensile strength was studied at 28 days curing age. Effect of crumb rubber on durability performance was done on chloride ion penetration resistance performance by migration test and by immersion in salt water. Chloride ion diffusion in rubberized concrete by migration test was carried out under steady state condition using effective diffusion coefficient, De meanwhile, immersion test in salt water was conducted under non-steady state condition using apparent diffusion coefficient, Da. Results showed that compressive strength was decrease with the increasing of crumb rubber in the mixture.  Even though the strength were reducing with the inclusion of crumb rubber, the reduction were less than 50% and it achieved acceptable structural strength. Chloride transport characteristics were improved by increasing amount of CR and rubberized concrete with w/c = 0.35 gave better resistance against chloride ion compared to w/c = 0.50 with more than 50% difference. Silica fume provide slightly strength increment compared to normal rubberized concrete and the same behavior was observed during chloride ion diffusion test.


Sign in / Sign up

Export Citation Format

Share Document