The Effect of the Freeze-Thaw Cycles in Nanometer Pores on the Cement Structure

2014 ◽  
Vol 488-489 ◽  
pp. 620-624
Author(s):  
Long Zhou ◽  
Xu Liang Hou ◽  
Zhong Ping Wang

The pore structure of cement-based materials is closely related to the freeze-thaw resistance durability. And this paper focused on nanometer pores to verify the connection of freeze-thaw cycles in the nanometer pores with the structure deterioration and to explore the stress in the pore wall during the freeze-thaw process. And BET method was adopted to analyze the pore structure of the cement and results indicated the changing trends of parameters such as the pore volume, average pore size and surface area of specimens. Moreover, pore size distribution presented prominent fluctuations of pore sizes in the range of 0 ~ 20 nm, while the changes on the scale of 20 ~ 100 nm were limited.

2012 ◽  
Vol 174-177 ◽  
pp. 1010-1014 ◽  
Author(s):  
Hong Bin Liu ◽  
Yang Ju ◽  
Kai Pei Tian ◽  
Jin Hui Liu ◽  
Li Wang ◽  
...  

The pore structure characteristics of reactive powder concrete (RPC) were investigated by means of the mercury injection method at seven temperature levels, namely, 20°C, 100°C, 150°C, 200°C, 250°C, 300°C, 350°C, respectively. The characteristic parameters such as porosity, pore volume, average pore size and threshold aperture varied with temperatures were analyzed. The results indicate that the porosity, pore volume, threshold aperture and other characteristic parameters of RPC increased with the temperature increasing.


Fractals ◽  
2019 ◽  
Vol 27 (01) ◽  
pp. 1940006 ◽  
Author(s):  
LEI ZHANG ◽  
XUEJUAN ZHANG ◽  
HAO CHAI ◽  
YAOCAI LI ◽  
YONGJIE ZHOU

Fractal dimension is an important parameter in the evaluation of tight reservoirs. For an outcrop section of the Nenjiang formation in the Songliao Basin, China, the pore structure and pore fractal characteristics of shale parasequences were investigated using fractal theory. In addition, factors causing pore structure changes were analyzed using the results of low-temperature nitrogen adsorption and scanning electron microscope (SEM) experiments. Conducive to gas migration and secondary pores development such as dissolution, results showed that nanoscale pores dominated by fracture-like morphology and consequent good internal connectivity were observed in each pore size section within the target layer. Each parasequence is characterized by a sequential upward decrease of average pore size and an upward increase of total pore volume, with an increasing number of pores from 2[Formula: see text]nm to 50[Formula: see text]nm. Pores are isolated from each other, with poor connectivity and relatively complex composition of brittle minerals and clay minerals. Main components of the brittle minerals, quartz and feldspar, occur in 20–50% and higher clay mineral content ranging from 50% to 70%. In the parasequence cycle, clay mineral gradually decreases while the brittle mineral content increases. Fractal dimension is negatively correlated with clay mineral content and positively correlated with brittle mineral (quartz and feldspar) content. The fractal dimension calculated by the imaging method and the FHH method shows an upward increasing tendency in each of the parasequence cycles. This is as a result of different phenomena, varied sediment hydrodynamic forces leading to particle size differences and increased brittle minerals resulting in microcracks, therefore, the fractal dimension of the large pores (imaging method) increases upward in the parasequence. Simultaneously, with increased content and accompanied dissolution of brittle minerals causing an increase of small pores from base to top of the parasequence, the fractal dimension of the small pores (FHH method) grows.


1993 ◽  
Vol 331 ◽  
Author(s):  
L. K. Louie ◽  
I. V. Yannas ◽  
M. Spector

AbstractFollowing injuries resulting in a gap, tendons generally do not heal sufficiently because the defect does not fill with reparative tissue, or the resulting scar tissue is not functionally adequate. The objective of this study was to engineer a collagen-GAG (CG) copolymer to facilitate tendon regeneration. Previous work in our laboratory using similar porous resorbable analogs of extracellular matrix have led to regeneration of skin and peripheral nerve.Matrices with controlled pore structure were produced by adapting the manufacturing technique developed in our laboratory for grafts with cylindrical geometry. CG suspensions contained within silicone elastomer tubes were frozen and lyophilized in a controlled manner. Quantitative optical microscopy was used to determine the percent porosity, average pore size, and pore orientation of the matrices.The CG matrices, formed in silicone elastomer tubes, 3.8 mm in diameter, had average pore sizes ranging from 20 to 150 μm. his range of pore sizes was comparable to that obtained previously using a diameter of 1.5 mm.1 The average pore size did not appear to be strongly dependent on the tubing diameter. The homogeneity of the pore structure and the pore channel orientation could be controlled by adjusting the temperature of the bath used for freezing the CG suspension and the velocity with which the graft was immersed into the coolant bath.


2014 ◽  
Vol 602-603 ◽  
pp. 279-284
Author(s):  
Li Qun Duan ◽  
Chen Chen Zhang ◽  
Qing Song Ma ◽  
Zhao Hui Chen

Nanoporous carbonaceous materials derived from polysiloxane were first prepared by pyrolysis at 1300°C followed with hydrofluoric acid (HF) etching treatment. Their thermal stability of pore structure in inert condition was investigated in this paper by nitrogen adsorption technique in detail. The specific surface area (SSA) and pore volume (total pore volume, micropore volume, mesopore volume) decreased continually in the heat-treatment temperature range of 1000~1400°C. The average pore size almost kept the same with the raw sample. However, when the temperature exceeded 1400°C, the micropore interconnection began transforming to mesopore structure, which led to the decline of SSA and the increase of average pore size. Furthermore, the pore size distributions (PSDs) curves showed that heat-treatment had an advantage on the transition process of pore structure from disorder to regularity to some extent when heat-treated in the range 1000~1400°C for the most possible reason of relief of residue strain in the carbonaceous materials.


2011 ◽  
Vol 368-373 ◽  
pp. 361-364 ◽  
Author(s):  
Feng Qu ◽  
Di Tao Niu

Under action of repeated freeze-thaw cycles, different changes of pore structure features has occurred in different varieties of concrete.In this study, the average pore size of concrete and total porosity was discussed especially with the trends.Based on this, the gas diffusion model and the chloride ion diffusion model in concrete was also discussed with the pore structure,which indicated that the freeze-thaw damage of concrete pore structure will have a greater impact to the durability of concrete, and so the life of concrete structures would be affected.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Yiqie Dong ◽  
Haijun Lu ◽  
Jixiang Li ◽  
Changhong Wang

Pollutant release, pore structure, and thermal effect of sewage sludge during anaerobic fermentation were investigated. Results showed that the pH value firstly declined and then increased during anaerobic fermentation. The BOD5and organics of sewage sludge declined, and the BOD5of samples which was originally neutral declined as much as 53.6%. The micropore of samples was relatively developed. The biggest adsorption amount was 69.2 cm3/g. The average pore size was enlarged about 16.0–19.8% under anaerobic fermentation. There existed endothermic valley during heating procedure of 0–200∘C because of the dehydration, and the mass loss was 60.9–72.5%. The endothermic valley of the sample fluctuated at the 14th day in the anaerobic fermentation. During the heating procedure of 200–600∘C, there existed exothermal peaks because of the oxidation and burning of the organics. The curve of sample which was originally neutral had comparatively large endothermic valley and exothermal peak.


2017 ◽  
Vol 50 (1) ◽  
pp. 61-75 ◽  
Author(s):  
Claire E. White ◽  
Daniel P. Olds ◽  
Monika Hartl ◽  
Rex P. Hjelm ◽  
Katharine Page

The long-term durability of cement-based materials is influenced by the pore structure and associated permeability at the sub-micrometre length scale. With the emergence of new types of sustainable cements in recent decades, there is a pressing need to be able to predict the durability of these new materials, and therefore nondestructive experimental techniques capable of characterizing the evolution of the pore structure are increasingly crucial for investigating cement durability. Here, small-angle neutron scattering is used to analyze the evolution of the pore structure in alkali-activated materials over the initial 24 h of reaction in order to assess the characteristic pore sizes that emerge during these short time scales. By using a unified fitting approach for data modeling, information on the pore size and surface roughness is obtained for a variety of precursor chemistries and morphologies (metakaolin- and slag-based pastes). Furthermore, the impact of activator chemistry is elucidated via the analysis of pastes synthesized using hydroxide- and silicate-based activators. It is found that the main aspect influencing the size of pores that are accessible using small-angle neutron scattering analysis (approximately 10–500 Å in diameter) is the availability of free silica in the activating solution, which leads to a more refined pore structure with smaller average pore size. Moreover, as the reaction progresses the gel pores visible using this scattering technique are seen to increase in size.


2017 ◽  
Vol 54 (3) ◽  
pp. 181-201
Author(s):  
Rebecca Johnson ◽  
Mark Longman ◽  
Brian Ruskin

The Three Forks Formation, which is about 230 ft thick along the southern Nesson Anticline (McKenzie County, ND), has four “benches” with distinct petrographic and petrophysical characteristics that impact reservoir quality. These relatively clean benches are separated by slightly more illitic (higher gamma-ray) intervals that range in thickness from 10 to 20 ft. Here we compare pore sizes observed in scanning electron microscope (SEM) images of the benches to the total porosity calculated from binned precession decay times from a suite of 13 nuclear magnetic resonance (NMR) logs in the study area as well as the logarithmic mean of the relaxation decay time (T2 Log Mean) from these NMR logs. The results show that the NMR log is a valid tool for quantifying pore sizes and pore size distributions in the Three Forks Formation and that the T2 Log Mean can be correlated to a range of pore sizes within each bench of the Three Forks Formation. The first (shallowest) bench of the Three Forks is about 35 ft thick and consists of tan to green silty and shaly laminated dolomite mudstones. It has good reservoir characteristics in part because it was affected by organic acids and received the highest oil charge from the overlying lower Bakken black shale source rocks. The 13 NMR logs from the study area show that it has an average of 7.5% total porosity (compared to 8% measured core porosity), and ranges from 5% to 10%. SEM study shows that both intercrystalline pores and secondary moldic pores formed by selective partial dissolution of some grains are present. The intercrystalline pores are typically triangular and occur between euhedral dolomite rhombs that range in size from 10 to 20 microns. The dolomite crystals have distinct iron-rich (ferroan) rims. Many of the intercrystalline pores are partly filled with fibrous authigenic illite, but overall pore size typically ranges from 1 to 5 microns. As expected, the first bench has the highest oil saturations in the Three Forks Formation, averaging 50% with a range from 30% to 70%. The second bench is also about 35 ft thick and consists of silty and shaly dolomite mudstones and rip-up clast breccias with euhedral dolomite crystals that range in size from 10 to 25 microns. Its color is quite variable, ranging from green to tan to red. The reservoir quality of the second bench data set appears to change based on proximity to the Nesson anticline. In the wells off the southeast flank of the Nesson anticline, the water saturation averages 75%, ranging from 64% to 91%. On the crest of the Nesson anticline, the water saturation averages 55%, ranging from 40% to 70%. NMR porosity is consistent across the entire area of interest - averaging 7.3% and ranging from 5% to 9%. Porosity observed from samples collected on the southeast flank of the Nesson Anticline is mainly as intercrystalline pores that have been extensively filled with chlorite clay platelets. In the water saturated southeastern Nesson Anticline, this bench contains few or no secondary pores and the iron-rich rims on the dolomite crystals are less developed than those in the first bench. The chlorite platelets in the intercrystalline pores reduce average pore size to 500 to 800 nanometers. The third bench is about 55 ft thick and is the most calcareous of the Three Forks benches with 20 to 40% calcite and a proportionate reduction in dolomite content near its top. It is also quite silty and shaly with a distinct reddish color. Its dolomite crystals are 20 to 50 microns in size and partly abraded and dissolved. Ferroan dolomite rims are absent. This interval averages 7.1% porosity and ranges from 5% to 9%, but the pores average just 200 nanometers in size and occur mainly as microinterparticle pores between illite flakes in intracrystalline pores in the dolomite crystals. This interval has little or no oil saturation on the southern Nesson Anticline. Unlike other porosity tools, the NMR tool is a lithology independent measurement. The alignment of hydrogen nuclei to the applied magnetic field and the subsequent return to incoherence are described by two decay time constants, longitudinal relaxation time (T1) and transverse relaxation time (T2). T2 is essentially the rate at which hydrogen nuclei lose alignment to the external magnetic field. The logarithmic mean of T2 (T2 Log Mean) has been correlated to pore-size distribution. In this study, we show that the assumption that T2 Log Mean can be used as a proxy for pore-size distribution changes is valid in the Three Forks Formation. While the NMR total porosity from T2 remains relatively consistent in the three benches of the Three Forks, there are significant changes in the T2 Log Mean from bench to bench. There is a positive correlation between changes in T2 Log Mean and average pore size measured on SEM samples. Study of a “type” well, QEP’s Ernie 7-2-11 BHD (Sec. 11, T149N, R95W, McKenzie County), shows that the 1- to 5-micron pores in the first bench have a T2 Log Mean relaxation time of 10.2 msec, whereas the 500- to 800-nanometer pores in the chlorite-filled intercrystalline pores in the second bench have a T2 Log Mean of 4.96 msec. This compares with a T2 Log Mean of 2.86 msec in 3rd bench where pores average just 200 nanometers in size. These data suggest that the NMR log is a useful tool for quantifying average pore size in the various benches of the Three Forks Formation.


2021 ◽  
Vol 13 (14) ◽  
pp. 7593
Author(s):  
Farooq Khan Niazi ◽  
Malik Adeel Umer ◽  
Ashfaq Ahmed ◽  
Muhammad Arslan Hafeez ◽  
Zafar Khan ◽  
...  

Ultrafiltration membranes offer a progressive and efficient means to filter out various process fluids. The prime factor influencing ultrafiltration to a great extent is the porosity of the membranes employed. Regarding membrane development, alumina membranes are extensively studied due to their uniform porosity and mechanical strength. The present research work is specifically aimed towards the investigation of nanoporous alumina membranes, as a function of sintering parameters, on ultrafiltration performance. Alumina membranes are fabricated by sintering at various temperatures ranging from 1200–1300 °C for different holding times between 5–15 h. The morphological analysis, conducted using Scanning electron microscopy (SEM), revealed a homogeneous distribution of pores throughout the surface and cross-section of the membranes developed. It was observed that an increase in the sintering temperature and time resulted in a gradual decrease in the average pore size. A sample with an optimal pore size of 73.65 nm achieved after sintering at 1250 °C for 15 h, was used for the evaluation of ultrafiltration performance. However, the best mechanical strength and highest stress-bearing ability were exhibited by the sample sintered at 1300 °C for 5 h, whereas the sample sintered at 1250 °C for 5 h displayed the highest strain in terms of compression. The selected alumina membrane sample demonstrated excellent performance in the ultrafiltration of sugarcane juice, compared to the other process liquids.


Author(s):  
Rachel C. Devereux ◽  
Craig J. Sturrock ◽  
Sacha J. Mooney

ABSTRACTBiochar has been reported to improve soil quality and crop yield; however, less is known about its effects on the physical and, in particular, structural properties of soil. This study examines the potential ability of biochar to improve water retention and crop growth through a pot trial using biochar concentrations of 0%, 1·5%, 2·5% and 5% w/w. X-ray computed tomography was used to measure soil structure via pore size characteristics; this showed that pore size is significantly affected by biochar concentration. Increasing biochar is associated with decreasing average pore size, which we hypothesise would impact heavily on hydraulic performance. At the end of the experiment, average pore size had decreased from 0·07 mm2 in the 0% biochar soil to 0·046 mm2 in the 5% biochar soil. Increased biochar concentration also significantly decreases saturated hydraulic conductivity and soil bulk density. It was also observed that increased biochar significantly decreases soil water repellency. Increased water retention was also observed at low matric potentials, where it was shown that increased biochar is able to retain more water as the soil dried out. The application of biochar had little effect on short-term (<10 weeks) wheat growth, but did improve water retention through a change in soil porosity, pore size, bulk density and wetting ability.


Sign in / Sign up

Export Citation Format

Share Document