Behaviour of Different Types of Steel Connections in Steel Frames against Progressive Collapse

2011 ◽  
Vol 374-377 ◽  
pp. 1330-1341
Author(s):  
Kang Hai Tan ◽  
Bo Yang

Firstly, this paper presents an overview of DoD code [1] against progressive collapse and points out the shortcomings of the current design approaches. After that, seven experimental tests of common types of bolted steel beam-column joints under a middle-column removal scenario are presented. This study provides the behaviour and failure modes of different types of connections, including their resistances and rotational capacities in catenary action. The test results indicate that the web cleat connection has the best performance in the development of catenary action. The flush end plate, fin plate and top and seat with web angle (TSWA) connections could also deform in a ductile manner and develop catenary action prior to failure. Numerical simulations have also been conducted. Both static and explicit dynamic solvers were employed to overcome problems of non-convergence, contact, large deformation and fracture simulations. It is demonstrated that the finite element analyses give reasonable accuracy compared to the test results. In addition, an extensive parametric study was undertaken using these validated models to obtain the rotation capacities of various types of connections under catenary action. Finally, some practical design implications have been drawn up from the experimental tests and the parametric study. A new tying resistance expression is proposed to consider the effect of large rotation. If large rotation capacity is not considered in the design stage, the joints with poor rotation capacities would fail to achieve the design tying resistances. In addition, four new connection acceptance criteria of rotation capacities have been proposed to incorporate catenary action under a middle column removal scenario. The work shows that current acceptance criteria of rotation capacities for steel joints such as web cleat, fin plate, flush end plate and TSWA connections, are probably too conservative as they only consider pure flexural resistance.

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Rasool Ahmadi ◽  
Omid Rashidian ◽  
Reza Abbasnia ◽  
Foad Mohajeri Nav ◽  
Nima Usefi

An experimental test was carried out on a 3/10 scale subassemblage in order to investigate the progressive collapse behavior of reinforced concrete (RC) structures. Investigation of alternative load paths and resistance mechanisms in scaled subassemblage and differences between the results of full-scale and scaled specimens are the main goals of this research. Main characteristics of specimen response including load-displacement curve, mechanism of formation and development of cracks, and failure mode of the scaled specimen had good agreement with the full-scale specimen. In order to provide a reliable numerical model for progressive collapse analysis of RC beam-column subassemblages, a macromodel was also developed. First, numerical model was validated with experimental tests in the literature. Then, experimental results in this study were compared with validated numerical results. It is shown that the proposed macromodel can provide a precise estimation of collapse behavior of RC subassemblages under the middle column removal scenario. In addition, for further evaluation, using the validated numerical model, parametric study of new subassemblages with different details, geometric and boundary conditions, was also done.


2020 ◽  
pp. 136943322098165
Author(s):  
Kai Qian ◽  
Hai-Ning Hu ◽  
Yun-Hao Weng ◽  
Xiao-Fang Deng ◽  
Ting Huang

This paper presents the high-fidelity finite-element-based numerical models for modeling the behavior of prestressed concrete (PC) beam-column substructures to resist progressive collapse under column removal scenario. After careful calibration against data, the validated numerical models are further employed to shed light on the influence of bonded post-tensioned tendons (BPT) with a parabolic profile on the load transfer mechanisms of PC frames against progressive collapse. The effects of parameters, including initial effective prestress, profile of tendon and lateral constraint stiffness at the beam ends, are also investigated. The study shows that, due to the presence of prestressed tendons, the mobilization of compressive arch action in the beam at small deflections demands stronger lateral constraints, and the ultimate load resistance of PC beam-column substructures depends on combined catenary action from non-prestressed reinforcement and BPT at large deflections. For a given constraint stiffness, the initial effective prestress of BPT has less significant effect on the overall structural behavior. For prestressed tendon, a straight profile usually employed in structural strengthening can improve the initial structural stiffness and yield strength, but is less effective in enhancing the ultimate resistance against progressive collapse than the parabolic profile.


Sign in / Sign up

Export Citation Format

Share Document