Analysis on Life Cycle Cost and Economic Benefits of Self-Thermal Insulation System of Three Different External Walls in Changsha in China

2011 ◽  
Vol 374-377 ◽  
pp. 1438-1441
Author(s):  
Zhen Sha ◽  
Nian Ping Li ◽  
Bai Jun Wang ◽  
Yong Yang ◽  
Zhen Hui Xiao

The mathematical analysis model of LCC of self-thermal insulation system of external wall that is applicable to Changsha region is established by using degree days and present worth factor. And the LCC of three commonly used self-thermal insulation systems in Changsha is analyzed by using this model. Analysis results have proven that self-thermal insulation system of external wall has very significant comprehensive economic benefits compared with the wall that energy-saving measures are not taken, and it has an important practical significance to promote the development of energy-saving building in Changsha, China.

2021 ◽  
Vol 13 (5) ◽  
pp. 2491
Author(s):  
Alena Tažiková ◽  
Zuzana Struková ◽  
Mária Kozlovská

This study deals with small investors’ demands on thermal insulation systems when choosing the most suitable solution for a family house. By 2050, seventy percent of current buildings, including residential buildings, are still expected to be in operation. To reach carbon neutrality, it is necessary to reduce operational energy consumption and thus reduce the related cost of building operations and the cost of the life cycle of buildings. One solution is to adapt envelopes of buildings by proper insulation solutions. To choose an optimal thermal insulation system that will reduce energy consumption of building, it is necessary to consider the environmental cost of insulation materials in addition to the construction cost of the materials. The environmental cost of a material depends on the carbon footprint from the initial origin of the material. This study presents the results of a multi-criteria decision-making analysis, where five different contractors set the evaluation criteria for selection of the optimal thermal insulation system. In their decision-making, they involved the requirements of small investors. The most common requirements were selected: the construction cost, the construction time (represented by the total man-hours), the thermal conductivity coefficient, the diffusion resistance factor, and the reaction to fire. The confidences of the criteria were then determined with the help of the pairwise comparison method. This was followed by multi-criteria decision-making using the method of index coefficients, also known as the method of basic variant. The multi-criteria decision-making included thermal insulation systems based on polystyrene, mineral wool, thermal insulation plaster, and aerogels’ nanotechnology. As a result, it was concluded that, currently, in Slovakia, small investors emphasize the cost of material and the coefficient of thermal conductivity and they do not care as much about the carbon footprint of the material manufacturing, the importance of which is mentioned in this study.


2012 ◽  
Vol 430-432 ◽  
pp. 1628-1631
Author(s):  
Ding Tang Wang

With the coming forth of a batch of energy saving buildings in China, some quality issues of cracking, hollowing, dropping, disrupting of thermal insulation layers follow on the heels of it. This paper analyzes the mechanism and causes of formation on these quality issues and puts forward the corresponding countermeasures for avoiding, treating or taking precaution against these issues. It is a valuable reference to treat the issues on insulation system as well as has directive meanings to install insulation system.


2020 ◽  
Vol 12 (19) ◽  
pp. 7862
Author(s):  
Zhenmin Yuan ◽  
Jianliang Zhou ◽  
Yaning Qiao ◽  
Yadi Zhang ◽  
Dandan Liu ◽  
...  

In the context of the increasingly severe energy crisis and global warming, green buildings and their energy-saving issues are being paid more attention in the world. Since envelope optimization can significantly reduce the energy consumption of green buildings, value engineering (VE) technology and building information modeling (BIM) technology are used to optimize the envelope of green buildings, which takes into account both energy saving and life cycle cost. The theoretical framework of optimization for green building envelope based on BIM-VE is proposed, including a BIM model for architecture, a life cycle cost analysis model, energy-saving analysis model, and a value analysis model. In the life-cycle cost model, a mathematical formula for the life-cycle cost is established, and BIM technology is used to generate a bill of quantity. In the energy-saving analysis model, a mathematical formula for energy saving is established, and BIM technology is used for the building energy simulation. In the scheme decision-making sub-model, VE technology integrating life cycle cost with energy saving is used to assess the envelope schemes and select the optimal one. A prefabricated project case is used to simulate and test the established methodology. The important results show that the 16 envelope schemes make the 16 corresponding designed buildings meet the green building evaluation standards, and the optimal envelope scheme is the “energy-saving and anti-theft door + exterior window 2+ floor 1+ exterior wall 1 + inner shear wall + inner partition wall 2 + planted roof” with the value 10.80 × 10−2 MW·h/ten thousand yuan. A significant finding is that the value generally rises with the increase of energy-saving rate while the life cycle cost is irregular with the increase of energy-saving rate. Compared with previous efforts in the literature, this study introduces VE technology into architectural design to further expand the current boundary of building energy-saving theory. The findings and suggestions will provide a valuable reference and guidance for the architectural design industry to optimize the envelope of green buildings from the perspective of both energy saving and life cycle cost.


2011 ◽  
Vol 71-78 ◽  
pp. 4115-4119
Author(s):  
Xiao Qiu Ma

To ensure the construction quality of EPS external wall thermal insulation system , need to controll raw materials, construction conditions, construction methods and quality control acceptance criteria and other aspects


2014 ◽  
Vol 1073-1076 ◽  
pp. 1263-1270 ◽  
Author(s):  
Feng Qian

The text elaborates on the significance and profile of insulation system for external wall of residential buildings in our country, makes comprehensive comparison among the external wall's self-insulation system, external wall's internal insulation system, sandwich composite insulation system and external wall's external insulation system, and reveals that the external wall's external insulation system has the advantage of strong feasibility, law cost, effective heat insulation break bridge and protective structure, which offers great potential for existing buildings in energy-saving rebuilding, thus finding a widest application and enjoying a promising market prospects.


2012 ◽  
Vol 174-177 ◽  
pp. 988-992
Author(s):  
Shuang Mei Cao

This thesis analyzes the current situation of the heat insulation system of composite wall in China. Through comparison, it points out that heat insulation system is the trend of the development for heat preservation and energy saving, and meanwhile, it gives direction for further research to several different new type heat insulation systems.


2013 ◽  
Vol 788 ◽  
pp. 656-659
Author(s):  
Xiao Jie Zhang ◽  
Yuan Ping Liu

Building palisade structure is the most important part of the wall, so the external wall thermal insulation technology has become an important part of building energy efficiency. After the author found the domestic use of insulation materials in a variety of forms, different use method makes the external wall thermal insulation system has a problem. The analysis of the cause of the problem at the same time, this paper discusses how to use of selected materials and improving the construction methods to avoid the happening of the accident.


2013 ◽  
Vol 1 (4) ◽  
pp. 402 ◽  
Author(s):  
Ali Etem Gürel ◽  
Yusuf ÇAY ◽  
Ali DAŞDEMİR ◽  
Enver KÜÇÜKKÜLAHLI

Bina dış duvarlarında yapılacak ısı yalıtım uygulamaları, yakıt tüketimini düşürerek ekonomik kazanç sağlamanın yanında, fosil kaynaklı yakıt kullanımından kaynaklanan ve hava kirliliğine neden olan emisyonların düşürülmesinde de son derece etkilidir. Bu çalışmada Karabük’te kömür ve doğalgaz kullanımında dış duvar optimum yalıtım kalınlığı tespitinin ekonomik ve çevresel analizi yapılmıştır. Çalışmanın ekonomik boyutu, yaşam döngüsü maliyet analizine (LCCA) dayanan P1-P2 yöntemi ile gerçekleştirilmiştir. Çalışmanın sonuçları, yakıt olarak kömür kullanıldığında optimum yalıtım kalınlığı ve enerji tasarrufunun sırasıyla 0.135 m ve 129.42 TL/m² olduğunu göstermiştir. Yakıt olarak doğalgaz kullanımında ise bu değerler sırasıyla 0.118 m ve 98.01 TL/m² olarak bulunmuştur. Optimum yalıtım kalınlığının hava kirliliğine olan etkileri incelendiğinde, yalıtımsız bina dış duvarında hesaplanan yıllık yakıt tüketimi, CO2 ve SO2 emisyonlarının yakıt tipine bağlı olarak optimum yalıtım kalınlığı noktasında %86’ya kadar azaldığı hesaplanmıştır. The Effect Of External Wall Optimum Insulation Thickness On Energy Saving And Air Pollution For Karabük Heat insulation applications carried out on external walls of building provides energy saving by decreasing fuel consumption and also quite important in decreasing emission which results from fossil-based fuel usage and causes air pollution. In this study, economic and environmental analyses were done for determination of external wall optimum thickness in using coal and natural gas usage in Karabük. Economic extent of the study was done with P1-P2 method which is based on life cycle cost analysis (LCCA). The results show that optimum insulation thickness and energy saving are 0.134 m and 117.14 TL/m² respectively when coal is used as a fuel. These values are 0.116 m and 88.39 TL/m² when natural gas is used as fuel. When the effects of optimum insulation thickness on air pollution are observed, CO2 and SO2 emissions calculated on external wall of uninsulated building decreased up to 85.4% at the point of optimum insulation thickness according to fuel type.


Sign in / Sign up

Export Citation Format

Share Document